TA: Florence Bouvet

Calculus Review

1 Differentiation of one variable

<u>Definition</u>: The process of finding the derivative of a function is called differentiation.

<u>Notation</u>: For function y = f(x), the first derivative is generally denoted as f'(x) or $\frac{dy}{dx}$.

The derivative of f at x is given by:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{1}$$

1.1 Derivative as the slope of the tangent line

The slope of a strait line (linear function y = f(x)) is:

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x + \triangle x) - f(x)}{\triangle x}, \text{ if } x_2 - x_1 = \triangle x$$
 (2)

If now we are working with a non-linear function such as $f(x) = x^2$, the slope of the curve changes at each point of the curve. To find a general formula of the slope, we use the derivative of the function f(x). In our example, the slope of the curve x^2 is given by its derivative which is 2x.

1.2 Derivative as the rate of change

Coming back to the linear function f, its slope measures how much f(x) increases for each unit increase in x. Thus, it measures the *rate of change* of the function f. In equation 2, $\triangle x$ measures the change in x and $f(x + \triangle x) - f(x)$ the change in y.

1.3 Differentiation Rules

Suppose that k is an arbitrary constant and that f, g are differentiable functions at $x = x_1$.

1.3.1 The Constant Rule

The derivative of a constant k is zero.

$$\frac{d}{dx}[k] = 0 (3)$$

1.3.2 The Power Rule

If n is a rational number, a simple power rule is

$$\frac{d}{dx}[x^n] = nx^{n-1} \tag{4}$$

A more general rule is:

$$\frac{d}{dx}[f(x)^n] = n(f(x)^{n-1})f'(x)$$
 (5)

Example: If $f(x) = 3x^3$, $f'(x) = 9x^2$

If
$$g(x) = (2x+4)^2$$
, $g'(x) = 2(2x+4) \cdot 2 = 4(2x+4) = 8x+16$

1.3.3 The Product Rule

$$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)g'(x) + f'(x)g(x) \tag{6}$$

Example: If $f(x) = 3x^3$ and l(x) = (x+4), then $(f(x) \cdot l(x))' = 9x^2(x+4) + 3x^3 = 12x^3 + 36x^2$

1.3.4 The Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)^2]}, \text{ with } g(x) \neq 0$$
 (7)

Example: If $f(x) = 3x^3$ and l(x) = (x+4), then $(\frac{f(x)}{l(x)})' = \frac{9x^2(x+4) - 3x^3 \cdot 1}{(x+4)^2} = \frac{6x^3 + 36x^2}{(x+4)^2}$

1.3.5 The Sum and Difference Rules

$$(f \pm g)'(x) = f'(x) \pm g'(x)$$
 (8)

Example: If $n(x) = 3x^4 + x^5$, $n'(x) = 12x^3 + 5x^4$

1.3.6 The Chain Rule

Let's define the function h as h(x) = g(f(x)) and i as i(x) = f(g(x))

Example: if f(x) = x + 4 and $g(x) = x^2$, then $h(x) = g(f(x)) = (x + 4)^2$ and $i(x) = f(g(x)) = x^2 + 4$.

$$\frac{d}{dx}[g(f(x))] = g'(f(x))f'(x) \tag{9}$$

Example: $h'(x) = 2(x+4) \times 1 = 2x + 8$

1.3.7 The Derivative of the Log Function

A simple version of this rule is:

$$\frac{d}{dx}[\ln x] = \frac{1}{x} \tag{10}$$

The more general rule is:

$$\frac{d}{dx}[\ln(f(x))] = \frac{f'(x)}{f(x)} \tag{11}$$

Example: If $f(x) = 3x^3$ then $(\ln(3x^3))' = \frac{9x^2}{3x^3} = \frac{3}{x}$

2 Partial Derivative

For z = f(x, y), the partial derivatives f_x and f_y are denoted by

$$\frac{\partial}{\partial x}[f(x,y)] = f_x(x,y) = \frac{\partial z}{\partial x}$$
(12)

and

$$\frac{\partial}{\partial y}[f(x,y)] = f_y(x,y) = \frac{\partial z}{\partial y} \tag{13}$$

Example: Let's define $f(x,y) = 3x - x^2y^2 + 2x^3y$, then, $f_x(x,y) = 3 - 2xy^2 + 6x^2y$ and $f_y(x,y) = -2x^2y + 2x^3y$.