Regrade policy: If you would like your test regraded, please submit a written statement to explain why. Your entire test will be regraded, so there is a possibility that points could be lost rather than gained.

Multiple Choice:
Version A: 1) d 2) c 3) b 4) c 5) b 6) c 7) a 8) d
Version B: 1) d 2) a 3) d 4) c 5) c 6) b 7) c 8) b

Problem 1: Neoclassical Model
a) \(Y^s = 12 \times 1000^{1/3} \times 1000^{2/3} = 12 \times 1000 = 12000 \).
\[Y^d = C + I + G = [1000 + 0.6(12000-2000)] + [3000 - 1000r] + 2200 \]
setting \(Y^s = Y^d \): 12,000 = 12,200 – 1000r
so \[-200 = -1000r \] so \[r = 0.20 \]
\[W/P = MPL = 12(2/3)K^{1/3}L^{-1/3} = 8 \]

The equilibrium condition is that investment must equal saving.

b) Version A: a,a,b,a,c,c
Version B: b,b,a,b,c,c

c) Version A: b,b,a,b,a,b
Version B: a,a,b,a,b,a

Problem 2: Solow Growth Theory
a) golden rule condition: MPK = \(\delta + n \)
plugging in: \(k^{*}\text{gold} = 10 \) so \(k^{\text{gold}} = 10 \) and so \(k^{*}\text{gold} = 100 \).

b) steady state condition: \(s f(k^{*}) = (\delta + n) k^{*} \)
plugging in: \(s 2k^{*} = 0.10k^{*} \)
solve for \(s \): \(s 2(100) = 0.10(100) \) so \(20s = 10 \), so \(s = 0.5 \).
Solve for consumption: \(c = (1-s)y = (1-s) 2k^{1/2} = (1-0.5)2(100)^{1/2} = 0.5 \times 20 = 10 \).

c) A saving rate lower than 0.5 would result in less saving and investment, so that only a smaller capital stock could be maintained as a steady state. Although a larger fraction of output is used for consumption, the total level of output would be so much lower that this is actually a smaller amount of consumption.

A saving rate higher than 0.5 would lead to more saving and investment, so that a larger capital stock can be maintained. But because capital has a diminishing marginal product, the extra level of output is too small to make up for the fact that a smaller fraction of this output is used for consumption.