Consider a more realistic case, in between the two extreme assumptions we considered before.

Three models of aggregate supply

Consider 3 stories that could give us this SRAS:
1. The sticky-wage model
2. The imperfect-information model
3. The sticky-price model

\[Y = \bar{Y} + \alpha(P - P^e) \]

- Natural rate of output
- Parameter
- The expected price level
- The actual price level
The sticky-wage model

- Assumess that firms and workers negotiate contracts and fix the nominal wage ________

- The nominal wage, \(W \), they set is the product of a target real wage, \(\omega \), and the expected price level:
 \[
 W = \omega \times P^e
 \]

The sticky-wage model

\[
\frac{W}{P} = \omega \times \frac{P^e}{P}
\]

If it turns out that

then

unemployment and output are at their natural rates

Real wage is less than its target, so firms hire more workers and output rises above its natural rate

Real wage exceeds its target, so firms hire fewer workers and output falls below its natural rate

1. An increase in the price level
2. .. reduces the real wage for a given nominal wage,..
3. .. which raises employment,..
4. .. output,..
5. .. and income.
6. The aggregate supply curve summarizes these changes.

(a) Labor Demand
(b) Production Function
(c) Aggregate Supply

The sticky-wage model

- Implies that the real wage should be ________, _______________ over the course of business cycles:
 - In booms, when \(P \) typically rises, the real wage should fall.
 - In recessions, when \(P \) typically falls, the real wage should rise.

- This prediction does not come true in the real world.

The cyclical behavior of the real wage

<table>
<thead>
<tr>
<th>Percentage change in real wage</th>
<th>Percentage change in real GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>1975</td>
</tr>
<tr>
<td>1993</td>
<td>1992</td>
</tr>
<tr>
<td>1960</td>
<td>1996</td>
</tr>
<tr>
<td>1999</td>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
<td>1990</td>
</tr>
<tr>
<td>1991</td>
<td>1984</td>
</tr>
<tr>
<td>1979</td>
<td>1970</td>
</tr>
<tr>
<td>1980</td>
<td>1984</td>
</tr>
<tr>
<td>1974</td>
<td>1990</td>
</tr>
<tr>
<td>1990</td>
<td>2000</td>
</tr>
</tbody>
</table>

The imperfect-information model

Assumptions:

- all wages and prices perfectly flexible,
- each supplier produces one good, consumes many goods
- each supplier knows the nominal price of the good she produces,
The imperfect-information model

- Supply of each good depends on: the nominal price of the good divided by the overall price level.
- Supplier_________ at the time she makes her production decision, so uses the expected price level, P^e.
- Suppose P rises but P^e does not. Then supplier thinks her relative price has risen, so she produces more.
 With many producers thinking this way,_________.

The sticky-price model

- Reasons for sticky prices:
 -
 -
 -

- Assumption:
 - Firms set their own prices (e.g. as in monopolistic competition)

The sticky-price model

- An individual firm’s desired price is $p = P + a (Y - \bar{Y})$
 where $a > 0$.

Suppose two types of firms:
- firms with ________ prices, set prices as above
- firms with ________ prices, must set their price before they know how P and Y will turn out:
The sticky-price model

\[p = p^e + a(Y^e - \bar{Y}) \]

- Assume firms with sticky prices expect that output will equal its natural rate. Then,

- To derive the aggregate supply curve, we first find an expression for the overall price level.
- Let \(s \) denote the fraction of firms with sticky prices. Then, we can write the overall price level as

\[P = s p^e + (1 - s)[p + a(Y - \bar{Y})] \]

price set by sticky price firms
price set by flexible price firms

- Subtract \((1 - s)P\) from both sides:
 \[sP = s p^e + (1 - s)[a(Y - \bar{Y})] \]

- Divide both sides by \(s \):
 \[P = p^e + \left[\frac{(1 - s)a}{s} \right](Y - \bar{Y}) \]

The sticky-price model

If firms expect high prices, then firms who must set prices in advance will set them high. Other firms respond by setting high prices.

When income is high, the demand for goods is high. Firms with flexible prices set high prices. The greater the fraction of flexible price firms, the smaller is \(s \) and the bigger is the effect of \(\Delta Y \) on \(P \).
The sticky-price model

\[P = P^e + \left(\frac{1 - s}{s} \right) a (Y - \bar{Y}) \]

- Finally, derive AS equation by solving for \(Y \):

\[
Y = \bar{Y} + \alpha (P - P^e)
\]

where \(\alpha = \frac{s}{(1 - s)a} \)

The sticky-price model

In contrast to the sticky-wage model, the sticky-price model implies a ______________:

Suppose aggregate output/income falls. Then,
- Firms see a fall in demand for their products.
- Firms with sticky prices reduce production, and hence reduce their demand for labor.
- The leftward shift in labor demand causes the real wage to fall.

Summary & implications

Each of the three models of agg. supply imply the relationship summarized by the SRAS curve & equation
Summary & implications

Suppose a positive AD shock moves output above its natural rate and P above the level people had expected.

Over time, $P^* = E = P^*$ rises, SRAS shifts up, and output returns to its natural rate.

Inflation, Unemployment, and the Phillips Curve

The Phillips curve states that π depends on:

* ν: the deviation of the actual rate of unemployment from the natural rate

\[\pi = \pi^e - \beta(u - u^n) + \nu \]

where $\beta > 0$ is an exogenous constant.

Deriving the Phillips Curve from SRAS

1. $Y = \bar{Y} + \alpha(P - P^*)$
2. $P = P^*$
3. $P = P^* + (1/\alpha)(Y - \bar{Y}) + \nu$
4. $(P - ____) = (P^* - ___) + (1/\alpha)(Y - \bar{Y}) + \nu$
5. $\pi = \pi^e + (1/\alpha)(Y - \bar{Y}) + \nu$
6. $(1/\alpha)(Y - \bar{Y}) = -$
7. $\pi = \pi^e - \beta(u - u^n) + \nu$
The Phillips Curve and SRAS

SRAS: \(Y = \bar{Y} + \alpha(P - P^*) \)

Phillips curve: \(\pi = \pi^* - \beta(u - u^*) + \nu \)

- SRAS curve: output is related to _______________
 _______________.
- Phillips curve: unemployment is related to __________
 _______________.

Adaptive expectations

- **Adaptive expectations:** an approach that assumes people form their expectations of future inflation based on _______________
 _______________.
- A simple example: Expected inflation = last year’s actual inflation
 \(\pi^e = \) _______________.
- Then, the P.C. becomes
 \(\pi = \) _______________ - \(\beta(u - u^*) + \nu \)

Inflation inertia

\(\pi = \pi^e - \beta(u - u^*) + \nu \)

- In this form, the Phillips curve implies that inflation has inertia:
 - In the absence of supply shocks or cyclical unemployment, inflation will __________
 _______________.
 - Past inflation influences expectations of current inflation, which in turn influences the wages & prices that people set.
Two causes of rising & falling inflation

\[\pi = \pi - \beta (u - u^n) + \nu \]

- Inflation resulting from supply shocks. Adverse supply shocks typically raise production costs and induce firms to raise prices, "pushing" inflation up.
- Inflation resulting from demand shocks. Positive shocks to aggregate demand cause unemployment to fall below its natural rate, which "pulls" the inflation rate up.

Graphing the Phillips curve

In the short run, policymakers face a trade-off between \(\pi \) and \(u \).

\[\pi = \pi^e - \beta (u - u^n) + \nu \]

Shifting the Phillips curve

People adjust their expectations over time, so the tradeoff only holds in the short run. E.g., an increase in \(\pi^e \) shifts the short-run P.C. upward.
The sacrifice ratio

- To reduce inflation, policymakers can contract aggregate demand, causing unemployment to rise above the natural rate.
- The sacrifice ratio measures the ____________________________ ____________________________ ____________________________.
- Estimates vary, but a typical one is 5.

The sacrifice ratio

- Suppose policymakers wish to reduce inflation from 6 to 2 percent. If the sacrifice ratio is 5, then reducing inflation by 4 points requires a loss of ____________________ of one year’s GDP.
- This could be achieved several ways, e.g.
 - reduce GDP by 20% for one year
 - reduce GDP by ____________________
 - reduce GDP by 5% for each of four years
- The cost of disinflation is lost GDP. One could use Okun’s law to translate this cost into unemployment.

Rational expectations

Ways of modeling the formation of expectations:
- adaptive expectations: People base their expectations of future inflation on recently observed inflation.
- rational expectations: People base their expectations on ____________________________, including information about current and prospective future policies.
Painless disinflation?

- Proponents of rational expectations believe that __________________________:
- Suppose $u = u^n$ and $\pi = \pi^e = 6\%$, and suppose the Fed announces that it will do whatever is necessary to reduce inflation from 6 to 2 percent as soon as possible.
- If the announcement is credible, then π^e will fall, perhaps by the full 4 points.
- Then, π can fall ____________.

The sacrifice ratio for the Volcker disinflation

- Previous slide:
 - inflation fell by 6.7%
 - total of 9.5% of cyclical unemployment
- Okun’s law:
 each 1 percentage point of unemployment implies lost output of 2 percentage points. So, the 9.5% cyclical unemployment translates to 19.0% of a year’s real GDP.
- Sacrifice ratio = (lost GDP)/(total disinflation) = $19/6.7 = 2.8$ percentage points of GDP were lost for each 1 percentage point reduction in inflation.

The sacrifice ratio for the Volcker disinflation

- 1981: $\pi = 9.7\%$
- 1985: $\pi = 3.0\%$
- Total disinflation = 6.7%

<table>
<thead>
<tr>
<th>Year</th>
<th>u</th>
<th>u^n</th>
<th>$u-u^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>9.5%</td>
<td>6.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>1983</td>
<td>9.5</td>
<td>6.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1984</td>
<td>7.4</td>
<td>6.0</td>
<td>1.4</td>
</tr>
<tr>
<td>1985</td>
<td>7.1</td>
<td>6.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Total 9.5%
The natural rate hypothesis

Our analysis of the costs of disinflation, and of economic fluctuations in the preceding chapters, is based on the **natural rate hypothesis**: Changes in aggregate demand affect output and employment. In the long run, the economy returns to the levels of output, employment, and unemployment described by the classical model (chapters 3-8).

Chapter summary

1. Three models of aggregate supply in the short run:
 - sticky-wage model
 - imperfect-information model
 - sticky-price model
 All three models imply that output rises above its natural rate when the price level rises above the expected price level.

Chapter summary

2. Phillips curve
 - derived from the SRAS curve
 - states that inflation depends on
 - expected inflation
 - cyclical unemployment
 - supply shocks
 - presents policymakers with a short-run tradeoff between inflation and unemployment