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Abstract

The notion of a vector replacement system, developed in the computer science literature, is used to analyze the
reachability problem in integer-valued input—output models. An integer-valued input—output system with initial resources is
a 5-tuple (n,m, A, B, u), where n is the number of commodities, m the number of production processes, A4 is the n X m
input matrix, B is the n X m output matrix and u € " is the initial vector of resources. The elements of A, B and p are
non-negative integers. A vector u' is reachable from p if it is possible to transform u into w' through a sequence of
production processes, without ever violating the feasibility constraint represented by the available resources.

1. Introduction

The notion of an input—output system was first introduced by von Neumann in 1937 [von
Neumann (1945)]. The open Leontief system [Leontief (1941)] is a special case of it. An
input—output system is a 4-tuple (n,m, A, B), where n is the number of commodities, m the
number of production processes, A is an n X m input matrix and B is an n X m output matrix. The
elements of A and B are non-negative real numbers. Thus fori€{1,...,n}andjE {1,...,m},
the element g;; of A is the quantity of commodity i used by production process j, when the latter is
operated at unit intensity, while the element b, of B is the quantity of commodity i produced by
process j (when operated at unit intensity). It is assumed that each production process requires at
least one input (every column of A contains at least one positive entry). When # = m and B is the
identity matrix, then A is called a Leontief matrix. An important assumption that is usually made
when dealing with input—output systems is that all the production processes can be scaled up or
down by an arbitrary factor, that is, the corresponding technology displays constant returns to
scale. We shall see later that for the analysis of section 2 the assumption of constant returns to
scale is not needed.

An input—output system with initial resources is an input—output system together with a
non-negative vector u, € R" of initial resources. A question that has been addressed only
indirectly and implicitly in the literature is the following: Given an input—output system with
initial resources pu,, what are all the possible commodity vectors w into which p, can be
transformed? This question motivates the following definition.

* I am grateful to Kanapathipillai Sanjeevan for introducing me to the computer science literature referenced in this paper
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Definition. Given an input—output system with initial resources w,, we say that the non-negative
commodity vector u €R" is reachable from p, through the sequence (x,,x,,...,x,) of non-
negative intensity vectors in ™ if

m=pyt (B—A)x, +x,+ - +x,), (1)

ot (B—A)x, +x,+ - +x,)=0, foreveryr=1,...,k, (2)

AxlS/.,LQ, (3)
and

Ax, =p,+(B—A)(x, +tx,+---+x,_,), foreveryr=2,...,k. (4)

Finally, we say that u' € X", u’' =0, is coverable from p,, if either (1) n’' = p,, or (2) there exists
a u=p' and a sequence of intensity vectors (x,, x,,...,x,) such that u is reachable from u,
through this sequence.

The interpretation of the above definition is clear. Starting from u,, by activating x, one first
obtains p, = u, + (B — A)x,. Then from u,, by activating x,, one obtains u, = u, + (B — A)x,, etc.
Condition (1) requires that at the end of the sequence, by activating x,, one obtains u, = u.
Condition (2) requires that, for every r=1,...,k, u, be non-negative. Condition (3) requires
that the initial activity vector x, be feasible, given w,. Finally, condition (4) requires that, for
every r=2,...,k, activity vector x, be feasible given u,_,.

The reachability or coverability problem has only been addressed implicitly in the input—output
literature. For example, an implicit answer to the coverability problem in a Leontief framework is
implied by the following theorem [for a proof see Gale (1960, ch. 9)].

Theorem. Let A be an n X n Leontief matrix. Then the following conditions are equivalent:

(1) There exists a positive vector x EM" such that x> Ax (if w and z are two vectors in W”,
p =1, w>z means that every component of w is greater than the corresponding component of z).

(2) The matrix (I — A) is invertible and its inverse is non-negative (where I denotes the identity
matrix).

(3) A<1, where A is the maximum eigenvalue of A (recall that, by the Perron-Frobenius
theorem, there exists a positive real number A such that: (i) A is an eigenvalue of A, and (i) if ' is a
real or complex eigenvalue of A, then |X'|<A).

A Leontief matrix that satisfies any of the above conditions is called productive. Using the
above theorem it is easy to prove the following.

Proposition. Let A be a productive Leontief matrix. Let u, >0 be a vector of initial resources and
let y € R" be an arbitrary non-negative vector. Then y is coverable from p,.

Sketch of proof. Consider first the case where A is irreducible. Let A be the maximum eigenvalue
of A and % be a corresponding eigenvector. Then by the Perron-Frobenius theorem, x > 0.
Choose a scalar € >0 small enough so that Aex < u,. By activating the production vector ex, u,
can be transformed into

B =y — AeX + eX > pu, — Aex + Aex (since A<1)=p, .

Repeating a sufficiently large number of times we obtain a commodity vector ' =y.
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If A is not irreducible, change some of the zero entries of A to § >0, small enough so that the
resulting matrix is still productive and is irreducible. Then apply the above reasoning to the new
matrix. O

Two things are crucial for the validity of the above proposition: (1) the hypothesis that u, >0,
and (2) the fact that there are constant return to scale. For example, let

A= (g7 03) e w= ()
Then, even though A is productive, the only vectors that can be covered from w,, are those of the
form (a, 0), with 0 = a = 10. On the other hand, if g, > 0, but small, and all the process have some
minimum scale of operation, it may not be possible to activate any production process. Notice also
that von Neumann’s technological expansion rate for this input—output system (where the output
matrix is the identity matrix) is 1.727 with corresponding optimal intensity vector (0.941, 0.337).
In the next section, drawing from the computer science literature, we provide an answer to the

coverability problem for arbitrary vectors w, and w, within a framework that does not require the
assumption of constant return to scale.

2. The Karp-Miller coverability tree

We shall analyze input—output systems (with initial resources) {n, m, A, B, p,) with the added
restriction that all the elements of A, B and u, be (non-negative) integers [such a system is known
as a vector replacement system in the computer science literature and was introduced by Keller
(1972); it is a generalization of the notion of a vector addition system that was first introduced by
Karp and Miller (1969); if the two matrices A and B are replaced by the matrix B—A, whose
entries are therefore allowed to be negative integers, then one obtains a vector addition system].
The restriction that the elements of A, B and u, belong to the set N of non-negative integers is
not an important restriction for the following reason. In any application the entries of the input
and output matrices will be rational numbers. It is therefore possible to redefine the units of
measurement for some or all the commodities in such a way that all the entries become integers.
For example, consider the (Leontief) system examined before, where

a=(o7 03) and B=(g 1Y)

For each commodity define a new unit which is equal to 1/10 of the old unit. Then the input and
output matrices become

_ (4 5) _ <1O 0

a=(73) md B=(y 1
Notice that we do not assume constant returns to scale. Thus it may not be possible to scale a
production process up or down by an arbitrary factor a« > (0. However, it is certainly possible to
repeat a production process several times. For instance, the first production process in the above
example can be repeated three times leading to a total output of 30 units of good 1 and a total

consumption of 12 units of good 1 and 3 units of good 2.
For every j=1,...,m, let ¢, €R"™ be the unit intensity vector whose jth coordinate is 1 and
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all the other coordinates are 0. Given a vector of initial resources, u, € N", the definition of
coverability of uw € N" from g, is the same as in section 1, except that we require each activity
vector x; in the sequence (x,,...,x,) to belong to the set {e;,e;, ..., e}

Karp and Miller (1969) constructed an algorithm that yields the so-called coverability tree.
Associated with each node of the tree is an extended vector. While the initial vector of resources,
K, is a point in N", an extended vector is a point in the set (N'U {0})". The symbol % stands for
‘infinity’ and represents a number of units of a commodity that can be made arbitrarily large. For
any integer k, we define:

w4+ k=00, w—k =00, k<o, 00 < 00,

Let a; denote the jth column of the input matrix A and b; denote the jth column of the output

matrlx B (j=1,...,m). Given a vector of initial resources i,, we associate u, with the root of
the tree. For every j=1,...,m for which u,=a,, we construct a new node and associate with it
the commodity vector pJ =p,—a; +b,. We then repeat the procedure starting from this new
vector p’ (for every j=1, ,m for whrch p'=a;, we construct a new node and associate with it

the vector u” =pn' —a; + b etc ). However, we 1ntroduce rules aimed at making the tree finite, so
that, starting from the root every path leads to a terminal node. Obvious terminal nodes are dead
ends (a dead end is a vector g such that, for no j=1, ,m, i =a;), or nodes whose associated
vectors are duplicates of vectors previously obtained. The symbol  is used to obtain the
remaining terminal nodes. Consider a feasible sequence of unit intensity vectors o =e; e; ...¢;
which starts at a commodity vector u’ and leads to the commodity vector n”, with u'=p
w"# w'. Since the sequence o was feasible starting from w’, it will still be feasible starting from u”
and will lead to a new commodity vector u” = p” + (n” — n’) [since the sequence o always adds
(u"— w")]. If we repeat o n times, we add the commodity vector (u” —u') n times. Thus, for
those commodities that were increased by the sequence, we can create an arbitrarily large number
of units simply by repeating the sequence o as often as desired. During the construction of the
tree, if at any time we obtain a vector u” with u”=u’ and p”# u', we replace p” with an
extended vector where there is the symbol « in place of those components of u” that are greater
than the corresponding components of u’ (the discussion based on Fig. 1 below will illustrate
this).

The Karp—Miller coverability tree is constructed using the following algorithm. Every node v of
the tree is assigned two labels: an extended vector u[v] € (NU {=})" and a label ¢[v] € {open,
interior, duplicate, dead end, infinite}. The algorithm terminates when there are no nodes v such
that ¢[v] = ‘open’.

STEP 1. Let u, be the vector of initial resources. Label the root v, as follows: u[v,] =y,
¢[v,] = ‘open’.
STEP 2. While nodes v such that ¢[v] = ‘open’ exist, do the following:
STEP 2.1. Select a node v such that ¢[v]=‘open’.
STEP 2.2. If u[v] is identical to u[v'] for some node v’ # v on the path from the root to
v, then set ¢[v]= ‘duplicate’ and go back to Step 2.1.
STEP 2.3. If there is no j=1, ..., m for which u[v]=a,, set ¢[v] = ‘dead end’ and go
back to Step 2.1.
STEP 2.4. If cach coordinate of u[v] is the symbol =, set €[v] = ‘infinite’ and go back to
Step 2.1.
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STEP 2.5. While there exist j=1,...,m for which u[v]=a;, do the following for

every such j.

STEP 2.5.1. Set ¢[v] = ‘interior’. Draw a new vertex w and an arc from v to
w. Label the arc with production process j. Obtain the
commodity vector u’ = u[v] —a, +b,.

STEP 2.5.2. TF on the path from the root to v there exists a node z # v such
that ' = u[z] and p’ # p[z], then replace each component of
w1’ which is greater than the corresponding component of w[z]
with the symbol ; let u” be the resulting extended vector; set
piw]=pn" and ¢{w] = ‘open’; ELSE go to the next step.

STEP 2.5.3. Set w|w]=u' and €[w]= ‘open’.

Karp and Miller proved that the algorithm terminates (all nodes are labeled as either interior or
duplicate or dead-end or infinite) and therefore yields a finite tree. Thus the coverability problem
is decidable.

Example. Let

A:

— oo
nooo
SN O

1
and u, = %
1

SO
NONDO

Then using the Karp—Miller algorithm one obtains the coverability tree of Fig. 1. Activating
process 1 at unit intensity leads from (1,2,2,1) to (1,2,2,1)—(1,0,2,0)+(0,0,0,5)=
(0,2,0,6). The only process that can be activated (at unit intensity: for brevity, from now on the
clause ‘at unit intensity’ will be omitted) at (0, 2, 0, 6) is process 2 which leads to (2, 0, 2, 5). Here
the only process that can be activated is process 1, leading to (1,0, 0, 10), which is a dead end,
since no process can be activated. This explains the left branch of the tree. Similarly for the right
branch. Now let us go back to the root. Activating first process 2 and then process 3 leads first to
(3,0,4,0) and then to (3,6, 0,2). Now activating process 2 (the only one that can be activated)
we would get (5, 4,2, 1). This is greater than (1, 2,2, 1) = u{v,]. The first and second components
are greater, hence we replace them with the symbol ®. Thus u[vg] = (%, *, 2, 1). This means that
be repeating the sequence of processes (2,3,2) a sufficiently large number of times one can
increase the quantity obtained of commodities 1 and 2 to any desired level. Activating process 1 at
wmvg] = (%,©,2,1) one would obtain (°—1=00,% 0,6) which is greater than u[vs], the last
component being greater. Therefore we replace the last component with « and let wu[vy]=
(o0, %, 0, »). The remaining nodes are obtained similarly.

3. Conclusion

The purpose of this paper was to show the relevance and usefulness of some concepts and
techniques developed in the computer science literature for the analysis of the production
possibility set of an economy, starting from an initial vector of resources. For a more extensive
analysis of input—output systems, using the notion of a Petri net (also developed in the computer
science literature), see Bonanno (1993).
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