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Set-Theoretic Equivalence of Extensive-Form Games

G. Bonanno'

Abstract: A new game-form, the set-theoretic form, is introduced and it is shown that a set-
theoretic form can be associated with every extensive form. The map from extensive forms to
set-theoretic forms is not one-to-one and this fact is used to define a notion of equivalence for
extensive games. A transformation for extensive forms is then defined, called the inferchange
of contiguous simultaneous moves, and it is shown that it is possible to move from one game
to any other game in the same equivalence class by using this transformation a finite number
of times and without ever leaving the equivalence class. This transformation is a generalization
of Thompson’s “interchange of decision nodes”. Thus given an extensive game G there is a
different extensive game G’ that is equivalent to G if and only if there are moves in G that are
simultaneous and the difference between G and G’ lies exactly in the fact that (some of) these
moves are taken in a different temporal order in the two games.

1 Introduction

In the literature on non-cooperative games two different ways of describing interac-
tive situations have been suggested: the normal form (and its relatives: semi-reduced
normal form, reduced normal form, standard form) and the extensive form (recently
Greenberg [5] introduced a new modeling tool: the inducement correspondence).
The extensive form gives richer descriptions than the normal form since it allows one
to specify such details as the temporal order in which players move, the information
available to a player when it is her turn to move, etc. Sometimes, however, the ex-
tensive form forces the modeler to incorporate “too many” details. Consider, for
example, the problem of describing a situation where two players have to choose an
action in ignorance of the other player’s choice. The extensive form requires that the
temporal order in which choices are made be specified. An example is the Battle of
the Sexes. There are two ways of representing it as an extensive game and these are
shown in Figure 1.

These are two different descriptions: in game G, player 1 knows that player 2
will make her choice after him, while in game G, player 1, when it is his turn to
move, knows that player 2 has already chosen (although he does not know what she
chose). Since G, and G, describe different situations, it is conceivable that a solution
concept may prescribe different solutions for the two games. Indeed there is a refine-
ment of Nash equilibrium, recently proposed by Amershi et al. [1], according to
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which G, has a unique solution where player 1’s payoff is 3 and player 2’s payoff is
1, while G, has a unique solution where player 1’s payoff is 1 and player 2’s payoff
is 3.

One can react to this fact in two different ways, depending on whether one is
arguing in the “description mode” or in the “solution mode”.

Somebody who argues in the description mode might suggest that if one doesn’t
want to be forced to specify such details as the order in which simultaneous actions
are taken, then one can always use the normal form rather than the extensive form
as a modeling tool. The problem with this suggestion is that it is not satisfactory to
have a theory of games where sometimes situations are described using a certain tool
(the normal form) and sometimes using a different tool (the extensive form): a co-
herent theory should make use of the same language to model every situation. But
then, if one chooses the normal form as a modeling tool, one loses the ability to
specify the temporal order of moves in every situation, including those where moves
are not simultaneous. Consider the following example: player 1 is first asked to
choose whether or not to end the game by taking action Y, which gives a payoff of 2
to both players. If player 1 decides not to do so, a simultaneous Battle of the Sexes



Set-Theoretic Equivalence of Extensive-Form Games 431

follows. One way of representing this as an extensive form is shown as game G, in
Figure 2.

The extensive form requires us to specify who moves first after player 1 has
chosen action N, while the normal form forces us to give up the sequentiality of
actions A4, B, C and D with respect to action N.

Those who argue in the solution mode, on the other hand, might suggest that
the details over which the two extensive games of Figure 1 differ are strategically
irrelevant, in other words rational players would not make their choices depend on
those details (this, of course, implies a notion of rationality that must be different
from the one implicit in the solution concept put forward by Amershi et al. [1]).
This objection raises the following question: when is it that two extensive games are
“essentially the same”, in the sense that rational players would make the “same”
choices in the two games? It seems that the only satisfactory way of answering this
question is to start from an extensive-form solution concept (or, even better, an ex-
plicit definition of rationality) and then define two extensive games to be strategical-
ly equivalent if and only if they have the same solution(s). Kohlberg and Mertens [6]
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in their very influential contribution did not pursue this approach but suggested a
different one. They went back to a result of Thompson [9] according to which two
extensive games have the same (reduced) normal form if and only if one can be
obtained from the other by applying one or more of four well-defined transforma-
tions. Kohlberg and Mertens maintained that these transformations ought to be con-
sidered “irrelevant” by rational players and suggested a solution concept defined on
the reduced normal form. Obviously, their solution concept is compelling, as a solu-
tion concept for extensive games, only if one accepts their axiom that those transfor-
mations are indeed “irrelevant”.

This paper is concerned not with rationality, or strategic considerations, but
with the descriptive component of the theory of non-cooperative games. It is there-
fore in the same spirit as the papers by Dalkey [3], Elmes and Reny [4], Krentel et al.
[7]1, and Thompson [9].

We start by defining a new game-form, called set-theoretic form. We show that
a set-theoretic form can be associated with every extensive form. However, the map
from extensive forms to set-theoretic forms is not one-to-one and we use this fact to
define a notion of equivalence of extensive forms. It is worth stressing that we are
not suggesting a notion of strategic equivalence but rather a notion of “descriptive”
equivalence.

Next we describe a transformation, called the interchange of contiguous simul-
taneous moves, and show that it is possible to move from one extensive game to an
equivalent one by using this transformation a finite number of times and without
ever leaving the equivalence class. This transformation is a generalization of Thomp-
son’s “interchange of decision nodes”. Thus given an extensive game G there is a
different extensive game G’ which is (set-theoretically) equivalent to G if and only if
there are moves in G that are simultaneous and the difference between G and G~ lies
exactly in the fact that (some of) these moves are taken in a different temporal order
in the two games (for example, it will be shown that the two extensive games of
Figure 1 are set-theoretically equivalent). Thus the game-form suggested in this pa-
per has all the richness of the extensive form, excluding only the specification of the
temporal order in which simultaneous moves are made.

2 Definition of Game in Set-Theoretic Form
Throughout the paper we shall restrict attention to finite games without chance
moves.

Definition 2.1. A finite (non-cooperative) game in set-theoretic form (without
chance moves) is a (3n +2)-tuple

<N! Q, {ni}ieNa {eMi}ieN, {Zi}ieN>
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where

N=1{1,2,...,n} is a finite set of players;
Q is a finite set of outcomes;
n;: QR is player i’s payoff function (ieN);

S, is a collection of non-empty subsets of Q; an element A of .%7; is called an
action of player i;

2 is a partition of .%7;; an element . of X, is called a situation for player i.

The intuition behind the above definition is that taking an action means nar-
rowing down the set of possible outcomes. Thus an action can be thought of as a
subset of the set of initially possible outcomes: when player i takes action A, the
result is that the outcome which will eventually obtain is restricted to the subset A of
Q. (Note that we have ruled out impossible actions, that is, actions A4 such that
A=@). A situation for player i is simply a collection of actions among which the
player has to choose.

In order to make a game in set-theoretic form “playable”, that is, in order to
specify how players would play such a game, more structure needs to be added.
However, since our concern in this paper is merely with equivalence of extensive
games, the simple structure of definition 2.1 will suffice (and our results will corre-
spondingly be stronger).

We now show how to associate with every game in extensive form a game in
set-theoretic form by mapping terminal nodes into outcomes, choices into actions
and information sets into situations. This map, however, is not one-to-one and we
shall use this fact to define a notion of equivalence for extensive games (section 3).

We shall adopt the definition of (finite) extensive game given by Selten [8] and
restrict attention to extensive games without chance moves. Given an extensive game
G (not necessarily with perfect recall), let Z be its set of terminal nodes and let
=7, that is, let the set of outcomes coincide with the set of terminal nodes. Let N
coincide with the set of players in G and let m; coincide with A;: Z— R, the latter
being player i’s payoff function in G. Recall that a choice ¢ of player i at one of his
information sets in G is identified with a set of arcs (or arrows), one for each node in
the information set. With each choice ¢ in G we associate the set A of terminal nodes
that can be reached by plays that have an arc in common with ¢. We call 4 the
action corresponding to choice ¢. More precisely, let E be the set of arcs in the game
tree. For every ecE, let A(e) S Z be the set of terminal nodes that can be reached by
plays that contain arc e. If ¢ is a choice (hence a set of arcs), defineu(c) = (J 4(e).

eecc
Then p(c) is the action corresponding to choice ¢. Thus &= {u(c)}cec, where C; is
the set of choices of player / in G. Finally, we associate with every information set u
of player i in G a situation % (u) as follows: if ¢y, ..., c,, are player #’s choices at u,
then .77 (u) = {u(cy), ..., u(cn)}. It is clear that the object so constructed is a game
in set-theoretic form as defined above. (Note that, for an extensive game without
trivial moves, the function w—.% (4) from information sets to situations is one-to-
one: see Bonanno [2], where it is also shown that such notions as perfect recall,
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perfect information, simultaneity, etc. can be given a very appealing formulation in
the set-theoretic form).

Example 2.1. The extensive games G, and G, of Figure 1 are both mapped into the
following game in set-theoretic form:

N:{1’2}9 QZ{Zl,Zz,Z},Z4},

m(z)=1, m()=-1, m(z)=0, 7, (24) =3,

mafz1) =3, m2(22)=0, ma(z)=-1, n(za)=1,

o ={A={z,, 22}, B={23, 24} }, X1={}

A= {C={z2,, 23}, D={22, 24} }, 2>={H:}.
Example 2.2. Game G; of Figure 2 is mapped into the following game in set-
theoretic form:

N={1,2}, Q={z1, 22 23, 2> 25}

m)=1, m@)=-1, m@E)=0, m@)=3, mMm@&s)=2,

2(21) =3, M:(22)=0, 7a(zz)=-1, ma(zd)=1, n2(25) =2,

A, ={Y={zs}, A={z, 22}, B={z3,24}}, 21= {1}

”Q{2:{CE{ZI!Z3}’DE{Z2,ZA}}, 22:{%2},
while game G, of Figure 2 is mapped into the following game in set-theoretic
form:

N, 2, n,, n,, %, and 2, as above,

Ay ={Y={zs}, N={21, 22, 2a, 24}, A={z), 22}, B={z, 2},

2 ={{Y,N}, {4, B}}.

Thus, Figure 2 shows an example of two games that have the same reduced normal
form and yet have different set-theoretic forms.

3 Equivalence of Extensive Games

From now on we shall restrict attention to extensive games without trivial moves, by
which we mean that every player at every information set has at least two choices.
Recall, however, that we are not limiting ourselves to extensive games with perfect
recall.
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Definition 3.1. Two extensive games G and G’ are equivalent if they are both map-
ped into the same game in set-theoretic form (up to renaming). [It is clear that the
following binary relation R on the set of extensive games: “GRG "’ if the set-theoretic
form obtained from G is the same as that obtained from G’ by applying the proce-
dure explained in section 2” is an equivalence relation, that is, it is reflexive, sym-
metric and transitive.]

Thus, for example, the two extensive games of Figure 1 are equivalent (cf.
example 2.1), while the two extensive games of Figure 2 are not (cf. example 2.2).

It is clear that if G and G’ are equivalent, then they have:

(i) the same set of players,

(i) the same set of terminal nodes (hence the same number of plays),
(iii) the same payoff functions,

(iv) the same number of information sets for each player.

They may, however, have a different number of decision nodes and arcs, as the

equivalent games of Figure 3 show. (From now on, for simplicity, we shall omit
payoffs in the Figures.)
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Lemma 3.1. Let G and G’ be equivalent extensive games. Then for every terminal
node z, the play to z in G has associated with it the same set of actions as the play to
z in G’ (and hence the same number of arcs).

Proof. In this and the following proofs we shall make extensive use of the functions
A und u defined in section 2. It may be worth recalling those definitions. Given an
extensive game G where Z is the set of terminal nodes, E the set of arcs and C the set
of choices,

LiE—P(Z) ‘ (1)

(where P(Z) is the set of subsets of Z) is the function that associates with every
arc e the set of terminal nodes that can be reached by plays that contain e, while

u:C—~A2) ()

associates with every choice ¢ the action u(c) = |J A(e). Finally, we shall define a
new function: eec

EE— P(Z) (3

as follows: £(e)=u(c(e)) where c(e) is the unique choice to which arc e belongs.
(When we consider an extensive game G’ different from G, we shall denote the cor-
responding functions by A/, 4’ and &°).

Now, let (N, Q, {n;}icns (L} iens {2} ien) be the game in set-theoretic form
associated with G and G'. Fix zeZ. Let P, be the set of arcs that belong to the play
to z in G and P/ be the set of arcs that belong to the play to z in G’ (we distinguish
between the play to z, denoted by p., which is an ordered sequence of arcs, and P,
which is the (unordered) set containing those arcs). By definition of the function
&, E(P,) is the set of actions associated, in G, with the arcs that belong to P,. Similarly
E’(P}) is the set of actions associated, in G’, with the arcs that belong to P;/. We
want to show that £(P,)=¢&’(P;). Suppose not, that is, suppose there is an action A
that belongs to £’ (P;) but not to &(P,). Since Aeé’(P]), zeA. Since G and G’ are
equivalent, there is a choice ¢ in G whose corresponding action is A, that is,
A=u(c). Since ze A, there is an arc eec such that ze (e). Hence there is, in G, a
play to z that goes through e. If e does not belong to P, then we contradict the fact
that the play to z is unique. Hence e€P,. But eec implies that £(e)=pu(c). Hence
Aek(P,), a contradiction. O

It follows from lemma 3.1 that if G is equivalent to G’ and G # G’, then the differ-
ence must lie in the order in which actions are taken along one or more plays.
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4 The Interchange of Contiguous Simultaneous Moves

We now describe a transformation, called the interchange of contiguous simulta-
neous moves, that leads from an extensive game G to an equivalent extensive game
G’ # G. This transformation is illustrated in Figure 4 and is a generalization of the
transformation “interchange of decision nodes” introduced by Thompson [9].

Let G be an extensive game and let x be a node that belongs to information set u
of player i (note that ¥ may contain other decision nodes besides x). Let
ey =(x,¥1), ..., em=(x, ¥n) be the arcs incident out of x. Suppose that decision
nodes y,, ..., ¥.. all belong to the same information set v of player j (not necessarily
Jj#i; note also that v may contain other decision nodes to0o). Let r be the number of
choices of player j at his information set v. Then there are r arcs incident out of each
y.. Denote them by (Vi, te1)s (Vs tez)s --+s (Vs L) (=1, ..., m). We say that /’s
moves at x and j’s moves at the nodes y,, ..., y,, are contiguous and simultaneous.
These moves can be interchanged as follows. Assign node x to player j and replace

G’

Fig. 4
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her information set v with v’ =@\ {1, ..., ym})u {x}. Draw r nodes w;, ..., w, and
r ares fi=(x,w), ..., f,=(x, w,) incident out of x. Assign the set of decision
nodes {w,...,w,} to player / and replace his information set u with

w=w\{xpu{w,...,w}. Let ¢, be a choice of player j at information set v
(g=1,...,r) and let arcs (¥}, Lo, 1))> (V25 f2aia, 2))s =+ (Vs bnaiq, my) bElODE tO €4y
where «(q, 1), «(q, 2), ..., alq, m) are integers between 1 and r. Draw m arcs out
of decision node w, as follows: (W, tia, 1)y Wes L2aia, 2)s -+ s (Was bimaiq, my)- Re-
place choice ¢, of player j with c¢;=(c,\{(V1 tiag. 1))y (V2s raig, 2)) - -+
D> tmariq, m) )Y {(x, w)}. Finally, let arc (x, y,) belong to choice d of player i
(k=1,...,m). Replace d, with d{=(d\{x,y)PDU{(W1, te1), W2, 102), ...,
(W,, t,)}. That the game thus obtained is equivalent to the initial game is shown in
proposition 4.1.

Figure 4 illustrates this transformation. In this case we have: i=2; m=2; j=3;
r=3;t) =24, ti2=2s, Li3 =26, 21 =27, 122=2g, [23=29; C1= {(Xl, z1), (1, 24), (02, 27)},
e={(x1,22), 25, (2,2}, ={x,z), (1,2) (2,29}, so that
a(l,D=a(l,2)=1, o@,D)=a@,2)=2, aBG,D=aB,2)=3; d={x )},
d>={(x, y)}, etc.

Proposition 4.1. Let G’ be an extensive game obtained from G by applying (once)
the transformation of interchange of contiguous simultaneous moves (from now on
ICSM) described above. Then G’ is equivalent to G.

Proof. The following are the only differences between G and G":

(i) decision node x belongs to player i’s information set # in G and to player
J’s information set v’ in G';

(i) decision nodes yi, ..., ¥, in G (which belong to player j’s information set
v) are replaced by decision nodes wy, ..., w, in G’ (which belong to infor-
mation set u’ of player i);

(iii) choice d, of player i in G, which contains arc (x, y,), is replaced in G’ by
choice dj = (d\{(x, vy w {(wi, L), ..., (W, le)}, for each k=1, ..., m;

(iv) choice ¢, of player j in G, which contains arcs (¥1, tiaq, 19)s (V25 Lawig. )

vos (Fms bmaq. my) [Where each a(qg, k) is an integer between 1 and r], is
replaced in G’ by ¢ =(c,\{(V1, liata, n)s (V2> Laia, ) s Dms bmaia. m)})
v {(x, w))}.

G and G’ coincide in everything else. Thus we only need to show that if, in game G,
u(d,)=Ae sz, then u’(d;)=A in G’, for every k=1, ..., m; and, similarly, if, in
game G, u(c,)=Be %, then u’(c;)=B in G’. It is clear that the set of terminal
nodes reached by d, starting from all the decision nodes in u different from x is the
same as the set of terminal nodes reached by d;, starting from all the decision nodes
in u’ different from w,, w,, ..., w,. Hence we only need to restrict attention to node
x in « and nodes w,, w,, ..., w.in u’. Now, in game G, d; contains arc (x, y,) which
reaches the set of nodes {f;;, li2, ---, L}, While in G’ d{ contains arcs (wy, i),
(W2, te2), +.., (W, t,) which also reach the set of nodes {tui, t, ..., I }. Hence
u(d)=u’(d}) for every k=1, ..., m. Similarly, for every g=1, ..., r, in game G
¢, contains arcs (¥, Ha, v} -+ +» Vms Lot m)>» while in game G’ ¢, contains arc
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(x, w,) and in both cases the set of nodes {tia(g. 1) -+ fmaca. m} is reached. Hence
ule)=pu'(cg). O

The rest of the paper is aimed at showing the sufficiency of this transformation.

5 Games with Perfect Information and Simultaneous Games

It is clear that in order to be able to apply the transformation ICSM to a given
extensive game G, it is necessary that G satisfy the following property: there exists a
node x and an information set v such that: (a) x¢v and x precedes v, (b) all the plays
through x cross v. [Note that this implies that for every node y that lies on a play
through x and is between x and v it is also true that every play through y crosses v: it
is a consequence of the fact that in a tree for every two nodes there is at most one
path connecting them]. Let us call the negation of this property, property £.

Definition 5.1. We say that an extensive game G satisfies property f if for every
decision node x and for every information set v which is preceded by x (that is, v
contains a node that is a successor of x), there exists a play through x that does not
Cross v.

For example, an extensive game of perfect information without trivial moves
satisfies property £.

Proposition 5.1. Let G be an extensive game that satisfies property 8 and let G’ be
an extensive game that is (set-theoretically) equivalent to G. Then G'=G. In other
words, G is the only member of its equivalence class.

Proof. If G is an extensive game and u an information set of G, we define the span
of u, denoted sp(u), to be the set of terminal nodes that can be reached starting from
nodes in . Hence

spwy=|J A

Ae. S (u)
(recall that .%”(u) is the situation corresponding to information set u).

Let G be an extensive game that satisfies property . Let u = {x,}, where x, is the
root of G. Then sp(u)=Z and, for every information set v+ u, sp(v) is a proper
subset of Z (recall that we are only considering extensive games without trivial
moves). Let G’ be an extensive game that is equivalent to G. Let «’ be the informa-
tion set in G’ that corresponds to  [that is, .77 (u)= % '(1’)]. We want to show that
u’'={x4}, where x§ is the root of G’. Suppose not, that is, suppose u’ # {xg}=v’.
Then sp(v’)=Z. Let v be the information set in G corresponding to v’. Then v # u by
our supposition (recall that in extensive games without trivial moves the function
u— % (1) is one-to-one) and sp(v) =sp(v’')=Z, contradicting the hypothesis that G
satisfies property 8. Hence G and G’ have the same player and the same situation at
the root. Thus for every action A €. ({x,}) there is a unique arc e in G (incident
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out of the root) corresponding to action A4 (that is, £(e)=u({e})=A) and a unique
arc e’ in G’ (incident out of the root) corresponding to action A (that is,
E'(e)=u’'({e’'})=A). Now fix an arbitrary A €. ({x,}) and let e= (x¢, ») be the arc
such that £(e)=A. Let v be the information set to which y belongs (if y is a terminal
node, choose another action and another arc out of x,; if all the arcs out of x, end at
a terminal node, then clearly G=G"). Let v’ be the information set in G’ that corre-
sponds to v. Let e’ =(xg, y’) be the arc in G’ such that £’(e’)=A. We want to show
that y’ev’. Suppose not. Let y’ew’, with w’#v’. Then in G’ all the plays with 4 as
first action cross w’. Let w be the information set in G that corresponds to w’ [that
is, . (w)=.%""(w"), hence sp(w)=sp(w’)]. By our supposition w+ v. By lemma 3.1
also in G all the plays with 4 as first action must cross w (the plays with A as first
action are in one-to-one correspondence with the elements of A4). But since w#v, it
follows that y¢w and y precedes w. Furthermore, in G all plays with A as first
action go through node y. Hence all the plays that go through node y cross w, con-
tradicting the hypothesis that G satisfies property f.

Since action Ae. 7 ({x,}) was chosen arbitrarily, we have shown that for every
zeZ, the first two information sets crossed by the plays to z in G and G’, and the
order in which they are crossed, are the same in the two games. Again, fix an arbi-
trary Ae.% ({xo}) and let (xo, ¥) be the corresponding arc in G. Let v be the infor-
mation set to which y belongs. Fix an arbitrary arc e=(y, x) and let B=¢(e) be the
corresponding action and let w be the information set to which x belongs (as before,
if x is a terminal node, choose another arc out of y; if all arcs out of y end at
terminal nodes, choose another path of length 2 out of the root; if all the paths of
length 2 out of the root end at terminal nodes, then G=G"). Let e’ =(x4, y’) be
the arc corresponding to A in G’ (that is, £’(e’)=A) and e’'=(y’, x’) be the arc
corresponding to action B, that is, £’(e’’)= B [we showed above that y’ev’, where
v’ is the information set in G’ corresponding to v, that is, . (v)=.5"(v")]. Let w’
be the information set in G’ corresponding to w. We want to show that x ew’.
Suppose not, that is, suppose x’et’# w’. Then in G’ all the plays with 4 and B as
the first two actions cross ¢’. Let ¢ be the information set in G that corresponds to ¢”.
By our supposition ¢## w and therefore x¢¢. By lemma 3.1 also in G all the plays
with A and B as first actions must cross 7 (these plays are in one-to-one correspond-
ence with the elements of 4 nB). But those plays go through node x, contradicting
the hypothesis that G satisfies property . This argument can be repeated for every
decision node to show that for every zeZ the play to z in G and the play to z in G’
have associated with them the same ordered set of actions. Hence G=G". O

Corollary 5.2. If G is an extensive game with perfect information (and without
trivial moves), then G is the only member of its equivalence class.

Corollary 5.3. Let G be an extensive game. A necessary and sufficient condition for
there to be an extensive game G’ that is equivalent but not identical to G is that there
be a node x and an information set v such that: (a) x¢v and x precedes v, (b) all the
plays through x cross v.

Proof. Necessity is a corollary of proposition 5.1, sufficiency is a corollary of pro-
position 4.1. 0
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Define an extensive game G to be simultaneous if every play crosses all the informa-
tion sets. (Thus, a simultaneous game without trivial moves has perfect recall if and
only if each player has exactly one information set.)

Note, therefore, that if G is a game of length two (the length of a game is
defined as the length of its longest play), G satisfies property £ if and only if G is not
simultaneous. The same is not true for games of length three or more. Thus another
corollary of proposition 5.1 is that if G is a game that is not simultaneous and is of
length 2, then G is the only game in its equivalence class. For example, there is no
game which is equivalent to game G; of Figure 2, apart from G; itself.

Proposition 5.2. Let G be a simultaneous extensive game (without trivial moves).
Then:

(i) If G’ is equivalent to G, then G' is also simultaneous;
(ii) If each player has exactly one information set (i.e. if G has perfect recall)
then the equivalence class of G contains

NGRSV

i=1

games, where m (i) is the number of choices of player i at his information
set and n is the number of players. (The same formula applies to the case
where one or more players have more than one information set, provided it
is re-interpreted as follows. Let r(i) be the number of information sets of
player i (i=1,2, ..., n) and define n’=r(1)+r(2)+...+r(n), that is, treat
the same player at different information sets as different players. Then re-
place n with n’ in the above formula.)

Proof.

(i) Let G be a simultaneous extensive game and G’ be equivalent to G. Since
for every extensive game (without trivial moves) the map from information
sets to situations is one-to-one (see Bonanno [2]) and both G and G’ have
the same set of situations for every player, it follows that for every player /
there is a one-to-one map between his information sets in G and his infor-
mation sets in G’. Since in extensive games with no trivial moves every ac-
tion belongs to one and only one situation (see Bonanno [2]), the fact that
G’ is simultaneous follows from lemma 3.1.

(ii) Let G be a simultaneous game and assume that each player has exactly one
information set. In virtue of lemma 3.1 if we vary the order in which ac-
tions are taken along any given play, with the constraint that all the first
actions belong to the same situation, we obtain a game which is equivalent
to G. Thus to obtain all the games in the equivalence class of G we can
proceed as follows. Assign a player to the root. There are # possible ways of
doing this. Let i be the root player and m (i) be the number of his actions.
For each action of player i choose a permutation of the remaining (n—1)
players. Thus the total number of possible games where player i is at the
root is [(n—1)!1]1"®. O
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Figure 1 shows the equivalence class of a two-player simultaneous game where each
player has one information set and two choices, while Figure 5 shows the equiva-
lence class of a three-player simultaneous game where each player has one informa-
tion set and two choices.

So far we have dealt with the two extreme cases of games of perfect information
and of simultaneous games. The next section deals with general (finite) extensive
games (with no trivial moves and no chance moves).

6 General Extensive Games

The following proposition contains the main result of this paper. We recall once
more that we only consider extensive games without trivial moves.
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Proposition 6.1. Let G, and G§ be two equivalent extensive games. Then there is a

finite sequence of equivalent games (G, ..., G,,) such that:
(i) G,=Go;
(i) Gn=Gg;
(iii) for every k=2, ..., m, G, is obtained from G, _, by applying the transfor-

mation of interchange of contiguous simultaneous moves.

We shall first prove the following lemma. Define an information set to be maximal
if every play crosses it (for example, the root is a maximal information set).

Lemma 6.2. Let G, and G{§ be two (set-theoretically) equivalent extensive games.
Let m be the number of maximal information sets in G,. Then also G§ has exactly
m maximal information sets. Furthermore, there is an ordering (A, ..., %) of the
situations corresponding to these information sets such that - with a finite number
of applications of the transformation ICSM - it is possible to transform G, into an
equivalent game G where all the paths of length m from the root cross A, ..., %
in this order; similarly — with a finite number of applications of ICSM - it is possible
to transform G into an equivalent game G’ where all the paths of length m from
the root cross .7, ..., .5 in this order. Thus G and G’ are equivalent (by proposi-
tion 4.1) and the m-truncation of G coincides with the m-truncation of G’. (By the
m-truncation of a game (m = 0) we mean what is left of the game by considering only
paths of length m from the root and replacing what comes after a node x which is at
the end of such a path with 6(x), where 6(x) denotes the set of terminal nodes that
can be reached starting from node x).

Proof. We shall describe an algorithm that transforms G, into G and Gg into G'.
This algorithm will then be illustrated with an example based on Figure S. First of
all, note that, by lemma 3.1, if « is a maximal information set of G, then the corre-
sponding information set in G¢§ is maximal in G4. Thus G, and G¢ have the same
number of maximal information sets. Thus if m =1, it follows that the root is the
only maximal information set in both games and by the argument used in the proof
of proposition 5.1 both games have the same player at the root and the same situa-
tion. Suppose therefore that m>1.

STEP 1. Let player i be the player at the root of G, and let u= {x,}. Let u’ be
the corresponding information set of player / in G§. If u’'={xj} go to step 2. If
u’'# {xg}, then xg¢u’ because no play can cross an information set more than once.
Since u’ is a maximal information set in Gy, every play crosses u’. For every zeZ,
let y’(z) be the immediate predecessor of #’ on the play to z. Consider one which is
farthest from xg: call it y'(zo). Apply the transformation 1CSM to y'(z,). Let
G’ be the new game thus obtained. By proposition 4.1, G’ is equivalent to G4.
Let '’ be the information set in Gg’ corresponding to u in Go. There are three pos-
sibilities: (1) u’'={x§’}; (2) u’’ is the set of immediate successors of x§’ (the
root); (3) u’'# {x¢’} and u’’ is not equal to the set of immediate successors of
xs’. In case (1) go to step 2. In case (2) apply ICSM to x;’ and then go to step 2. In
case (3) repeat the above procedure until a game is obtained that is such that the
information set of player / corresponding to u consists of the immediate successors
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of the root, then apply ICSM to the root and go to step 2. Given the finiteness of
G, this can be done in a finite number of steps.

STEP 2. [At the end of step 1 we have transformed G{ into an equivalent
game that has the same player and the same situation at the root as game G,]. Con-
sider now game G,. Fix an arc (x,, x) incident out of the root and let v be the infor-
mation set to which x belongs and let i be the corresponding player. There are two
possibilities: (1) v is a maximal information set, (2) v is not maximal.

Suppose first that v is maximal. If every other arc incident out of X, is incident
into v go to step 3, otherwise let (x,, ¥) be an arc such that y¢v. Then y precedes v
and every play through y crosses v. Fix a ze Z reached by a play through y. Let w(z)
be the immediate predecessor of v along the play to z. Apply the transformation
ICSM to w(z). Repeat this procedure until a game is obtained which is such that the
information set corresponding to v consists of the immediate successors of the root.
We say that such an information set is fully in second position. Since G, is finite this
can be done in a finite number of applications of ICSM.

If v is not maximal, fix a play through x and let ¢ be the first maximal informa-
tion set crossed by this play. Apply the procedure just described to transform game
G, into an equivalent game where node x belongs to information set ¢. Then proceed
as described to take ¢ fully into second position.

STEP 3. [At the end of step 2 we have transformed G, into an equivalent game
where all the immediate successors of the root belong to the same information set,
call it v]. Go back to the game obtained at the end of step 1. Call it G4’. Let v’’
be the information set corresponding to v. If v’’ consists of the immediate successors
of the root, go to step 4, otherwise apply the procedure of step 2 in order to obtain a
game that does have this property. If m =2, the proof is now complete. Suppose
therefore that m>2.

STEP 4. Go back to the game obtained at the end of step 2 and proceed as in
step 2 (with an arbitrary arc incident out of the information set corresponding to v)
so as to obtain a game with a maximal information set (among the remaining ones),
call it ¢, that consists of the immediate successors of the immediate successors of the
root. We say that such a ¢ is fully in third position.

STEP 5. Go back to the game obtained at the end of step 3 and proceed as in
step 3 so as to obtain a game where the information set corresponding to ¢ is fully in
third position. If m =3 the proof is complete.

If m>3, continue these steps until both games have been transformed into
games G and G’, respectively, both having the property that every path of length m
from the root crosses the m maximal information sets in the same order (that is, the
corresponding ordered sequence of situations is the same in the two games). O

Example. Consider Figure 5 and number the games from left to right and from top
to bottom. Let us use the above algorithm with Gy = G- (the third game in the second
row) and G4 =G, (the third game in the third row).

STEP 1: first apply ICSM to node x in G,, and obtain Gs. Then apply ICSM to
the root in G5 and obtain G.,.

STEP 2: let us choose arc (x,, ¥) in G5 so that i=2 and v={y, s, t}. Then apply
ICSM to r and obtain G,. The even-numbered steps have therefore been com-
pleted.
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STEP 3: apply ICSM to node p in G, and obtain game G-,. Now apply ICSM to node
r in G, and obtain G,. The odd-numbered steps have also been completed.
Since in this example all the information sets are maximal (that is, the games are
simultaneous) the two games have actually been transformed into the same game.
Define an information set u to be maximal relative to decision node x¢u if x
precedes u and all the plays that go through x cross u.

Proof of Proposition 6.1. We describe an algorithm that transforms Gg into G, by
means of a finite number of applications of the transformation ICSM. Figure 6
shows an equivalence class and all the possible ways of transforming any game into
any other game following the steps given below.

STEP 1. Consider first the information sets in G, that are maximal. Let m be
their number. Apply lemma 6.2 to transform G, and G¢ into two games, G and G’
respectively, such that: G and G’ are equivalent and their m-truncations are identi-
cal, that is, for every terminal node z, the first m actions associated with the play to
z in G, and the order in which they are taken, coincide with the first m actions

Fig. 6
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associated with the play to z in G’ and the order in which they are taken. Therefore
if G is a game of length m (hence a simultaneous game), then so is G’ and G=G"'.
Suppose therefore that G is of length greater than m.

STEP 2. Let u be the mth information set from the root in G’ and u’ the cor-
responding one in G'. There is a one-to-one correspondence between the nodes in u
and those in u’. Fix xeu and let x’eu’ be the corresponding node in G'. The set of
terminal nodes that can be reached starting from x is equal to the set of end nodes
that can be reached starting from x’ and is equal to (4,nA;n...NA,) where
A,, A, ..., A, are the first m actions associated with all the plays that go through x
and x’. Suppose that there is at least one decision node that succeeds x. Two cases
are possible: (1) there is no information set that is maximal relative to x, (2) there is
at least one maximal information set relative to x. In case (1) fix an arbitrary arc
(x, ¥) and let B be the corresponding action [that is, £((x, ¥))=B]. Let v be the infor-
mation set to which y belongs. Let (x’, y’) be the arc corresponding to action B in
G’ and let v’ be the information set in G’ that corresponds to v. We want to show
that y“ev’. Suppose not, that is, suppose y’ew’#v’. Then in G’ all the plays that
have A4, ..., A, as first actions cross information set w’. Let w be the information
set in G that corresponds to w’. By our supposition w# v. Thus x¢w and x precedes
w. By lemma 3.1, also in G all plays that have 4,, ..., 4, as first actions must cross
w. But those plays must go through node x, which implies that w is a maximal infor-
mation set relative to x, a contradiction. Thus if there is no maximal information set
relative to x, the paths of length (m+ 1) that go through x and x’ coincide in G and
G’. Suppose now that we are in case (2) and there are r information sets that are
maximal relative to x. Then by lemma 3.1 there are r information sets in G’ that are
maximal relative to x’. Then we can apply the algorithm of lemma 6.2: fix an order-
ing of the corresponding situations and apply ICSM to transform G and G’ into new
games where the paths of length (m+ 1) through x and x’ coincide.

STEP 3. For every node x in the new game obtained from G at the end of step 2
and corresponding node x’ in the new game obtained from G’ (at the end of step 2),
such that the paths through x and x’ are identical in the two games, apply again the
procedure of step 2. Repeat until the same game is obtained from both games. 0O

Figure 6 illustrates an equivalence class. The arrows show the result of applying
(once) the transformation of interchange of contiguous simultaneous moves to any
given game in the class.

7 Conclusion

We introduced a new game-form, called the set-theoretic form, and showed that a
set-theoretic form can be associated with every extensive form. Since the map from
extensive forms to set-theoretic forms is not one-to-one we used this fact to define a
notion of equivalence of extensive games. We then described a transformation,
called the interchange of contiguous simultaneous moves, and showed that it is pos-
sible to move from one game to any other game in the same equivalence class by
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using this transformation a finite number of times and without ever leaving the equi-
valence class. This transformation is a generalization of Thompson’s “interchange
of decision nodes”. Thus given an extensive game G there is a different extensive
game G’ that is equivalent to G if any only if there are moves in G that are simulta-
neous and the difference between G and G’ lies exactly in the fact that (some of)
these moves are taken in a different temporal order in the two games.

Consider now the equivalence classes of extensive games generated by the rela-
tions of set-theoretic equivalence. These equivalence classes have the same richness
of the extensive form, excluding only the specification of the temporal order in
which simultaneous moves are made. An interesting open question is the following:
what extensive-form solution concepts are invariant with respect to the equivalence
classes generated by the notion of set-theoretic form? For example, does the notion
of sequential equilibrium have this invariance property?
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