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Abstract. The temporal updating of an agent’s beliefs in response to a flow of infor-

mation is modeled in a simple modal logic that, for every date t, contains a normal belief

operator Bt and a non-normal information operator It which is analogous to the ‘only

knowing’ operator discussed in the computer science literature. Soundness and complete-

ness of the logic are proved and the relationship between the proposed logic, the AGM

theory of belief revision and the notion of plausibility is discussed.

Keywords: iterated belief revision, information, qualitative Bayes rule, plausibility ordering

1. Introduction

Belief revision is a central topic in several fields. In game theory, belief re-
vision is the main building block of two widely used solution concepts for
dynamic (or extensive) games, namely perfect Bayesian equilibrium (see,
for example, Battigalli [2], Bonanno [5] and Fudenberg and Tirole [10]) and
sequential equilibrium (Kreps and Wilson [16]). The idea behind these so-
lution concepts is that, during the play of the game, a player should revise
his beliefs by using Bayes’ rule “as long as possible”. Thus if an informa-
tion set has been reached that had positive prior probability, then beliefs
at that information set are obtained by using Bayes’ rule (with the infor-
mation being represented by the set of nodes in the information set under
consideration). If an information set is reached that had zero prior prob-
ability, then new beliefs are formed more or less arbitrarily, but from that
point onwards these new beliefs must be used in conjunction with Bayes’
rule, unless further information is received that is inconsistent with those
revised beliefs. In computer science the theory of belief revision pioneered
by Alchourrón et al [1] (known as the AGM theory) has been studied exten-
sively (for an overview see Gärdenfors [11]). While in game theory beliefs
are typically represented by a probability distribution over a set of states
and belief revision is modeled using Bayes’ rule, in the AGM theory beliefs
are modeled syntactically as sets of formulas, called belief sets, in a given
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language. Information is thought of as a formula in this language and belief
revision is modeled as an operation that transforms a belief set into a new
belief set that incorporates the information. Within the AGM tradition the
issue of iterated belief revision has recently received considerable attention
(see, for example, Nayak et al [19]).

In this paper we propose a simple modal logic for iterated belief revision,
extending the two-period framework of Bonanno [6]. For every date t ∈ N
(where N is the set of natural numbers) we postulate a belief operator Bt and
an information operator It. The interaction of information and belief over
time is captured by several axioms. We start with three simple axioms and
show that the corresponding logic is sound and complete with respect to the
class of Kripke structures that satisfy the iterative version of the qualitative
content of Bayes’ rule. We then consider several strengthenings of this logic
and study their properties. For the strongest of these logics we show that
every belief revision history can be rationalized in terms of a plausibility
ordering of the set of states.

In the next section we begin with an example that illustrates the struc-
tures analyzed in the remainder of the paper.

2. A motivating example

A doctor examines a patient who reported an outbreak of skin rashes. The
patient claims not to have made any changes in his diet and gives the doctor
a list of medications that he has been taking for several years. Based on
her experience, the doctor narrows down the possible causes to four: bac-
terial infection (B), viral infection (V), allergic reaction to food (F) and
allergic reaction to medication (M). An initial assessment of the case (Time
0) leads the doctor to believe that it is an infection. Since she knows of
no treatment for a viral infection, she prescribes antibiotics which would
be effective against a bacterial infection. A few days later (Time 1) the
patient reports that there has been no change in his symptoms. The doctor
treats this report as information that it is not a case of bacterial infection
and becomes convinced that it is a viral infection. She informs the patient
that, unfortunately, there are no drugs that would be effective against a
viral infection. The patient requests a blood test. A positive result would
confirm the presence of an infection, while a negative result would rule out
an infection. The doctor yields to the patient’s request and a few days later
(Time 2) the lab reports a negative result to the blood test. Based on this
information, the doctor reaches the conclusion that the patient must have
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developed a sensitivity to one of the drugs and advises the patient to stop
taking all his medications. A few days later (Time 3) the patient reports,
once again, that there has been no change in his symptoms. The doctor
then concludes that it must be an allergic reaction to food and instructs the
patient to keep a detailed food diary.

In this example the doctor’s beliefs evolve over time in response to new
information. The history of the doctor’s beliefs can be represented using a
sequence of Kripke structures (Kripke [17]): the set of states, or possible
worlds, is Ω = {B,V,M,F} (where B denotes bacterial infection, V viral
infection, M medication allergy and F food allergy) and at every date t the
doctor’s beliefs can be represented by a binary relation Bt on Ω. For every
state ω ∈ Ω let Bt(ω) = {ω′ ∈ Ω : ωBtω′}, that is, Bt(ω) is the set of states
that–at time t–the doctor considers possible when the true state is ω. In the
above example, taking the true state to be F, the actual evolution of the
doctor’s belief is as follows: B0(F) = {B,V}, B1(F) = {V}, B2(F) = {M}
and B3(F) = {F}. In general, the binary relations {Bt}t∈N describe the
possible evolutions of the doctor’s beliefs in every possible case, that is,
whatever the true state.

Syntactically, let Bt be the belief operator at time t, so that the inter-
pretation of Btφ is “at time t the individual believes that φ”. If ω is a state
and φ a formula, we denote by ω � φ the fact that φ is true at state ω. The
truth of the formula Btφ at state ω is determined as usual: ω � Btφ if and
only, for every ω′ such that ωBtω′, ω′ � φ, that is, if φ is true at every state
that, at date t, the individual considers possible at state ω (if we denote the
truth set of φ by ||φ||, the truth condition for Btφ can be also be written
as follows: ω � Btφ if and only if Bt(ω) ⊆ ||φ||). For example, if φ is the
proposition “the patient has an infection” then, in our example, it is true at
– and only at – states B and V. If the true state is F then at that state it
is false that the patient has an infection and yet it is true that at date 0 the
doctor believes that the patient has an infection (F� ¬φ and F� B0φ).

Changes in the doctor’s beliefs are brought about by the receipt of new
information. It seems natural to represent the flow of information over time
in the same way in which we represent beliefs, namely by means of a sequence
of binary relations It, for every date t. We propose to model information
in a way which is reminiscent of the notion of “only knowing” (Levesque
[18]). Intuitively, we interpret “I am informed that φ” to mean “all I am
told is φ”. We capture this interpretation of information by means of the
following validation rule. Let It be the time t information operator, so that
the interpretation of Itφ is “at time t the individual is informed that φ”.
Then we set ω � Itφ if and only if two conditions hold: (1) for every ω′ such
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that ωItω′, ω′ � φ, and (2) for every ω′ ∈ Ω, if ω′ � φ then ωItω′. That is,
Itφ is true at state ω if the set of states reachable from ω by means of the
relation It coincides with the truth set of φ: It(ω) = ||φ||.1

The doctor’s beliefs at time t+1 are the result of the interaction between
her beliefs at time t and the information received at time t + 1. In our
example, at time 0 the doctor believes that the patient has a (bacterial
or viral) infection and, at time 1, she is informed that the patient does
not have a bacterial infection. Combining the two, the doctor modifies her
beliefs and comes to the new belief that the patient has a viral infection. In
a probabilistic setting, this new belief is what would be required by Bayes’
rule. The interaction of old beliefs and new information in our example is
shown in Figure 1. In all the figures we represent a binary relation R ⊆ Ω×Ω
as follows: (1) if a rounded rectangle encloses a set of states then, for any
two states ω and ω′ in that rectangle, ωRω′ and (2) if there is an arrow from
a state ω to a rounded rectangle, then for any state ω′ in that rectangle,
ωRω′. For example, in Figure 1 we have that

B0 = {(B,B),(B,V),(V,B),(V,V),(F,B),(F,V),(M,B),(M,V)},

I1 = {(B,B),(V,V),(V,F),(V,M),(F,V),(F,F),(F,M),(M,V),(M,F),(M,M)},

B1 = {(B,B),(V,V),(F,V),(M,V)}, etc.

In this example we have represented information at every date by means
of an equivalence relation, which implies that information is truthful or cor-
rect. Our results, however, do not require such an assumption: in general it
is possible for “information” to be incorrect (hence misleading, if believed).
For example, the lack of a reaction to antibiotics can be interpreted by the
doctor as information that the patient does not have a bacterial infection,
while–in reality–the patient may have been infected by a bacterium that has
developed resistance to antibiotics.

It is worth noting that, while the first piece of information received by the
doctor (“it is not a bacterial infection”) does not cause surprise–since it is
compatible with the doctor’s initial belief (it could be a viral infection)–later
pieces of information do cause surprise, since they contradict the doctor’s
beliefs (when the true state is F).

In Figure 1, information at time 1 represents the outcome of the antibiotic
treatment, so that the information is that the true state is either V or F or
M–if the treatment was not effective–while it would have revealed the true

1Thus our information operator plays the role of the conjunction of the two operators
K and O proposed by Levesque [18] who interprets Kφ as “the individual knows that φ”
and Oφ as “the individual only knows that φ”.
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Figure 1. The interaction of the doctor’s beliefs and information over time

state to be B if it had been effective. Information at time 2 represents the
outcome of a blood test, revealing that the true state is either F or M, if
negative, or the presence of an infection if positive. In the latter case we
have represented the cumulative information given by the outcome of the
antibiotic treatment together with the information given by the outcome of
the blood test, thus enabling the doctor to distinguish between states B and
V. Alternatively, we could have represented at date 2 the new information
conveyed by the outcome of the blood test, which–if positive–would merely
indicate that there is an infection, that is, that the state is either B or V. A
similar observation can be made concerning information at time 3. Thus an
alternative representation of the example discussed above could be as shown
in Figure 2. Note, however, that when belief revision obeys the axioms
introduced in the next section, the evolution of beliefs would be the same in
the two representations of information.

In the next section we propose a logic that is sound and complete with
respect to the class of Kripke structures that satisfy the qualitative version
of Bayes’ rule (the structures illustrated in Figures 1 and 2 belong to this
class). We then consider several strengthenings of that logic and discuss their
relationship to the AGM belief revision theory (see Alchourrón et al [1]).
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Figure 2. The evolution of the doctor’s beliefs when information is not cumulative

Finally, we show that when information becomes more refined over time (for
example, this is the case in the structure of Figure 1) the individual’s belief
revision can be rationalized in terms of a plausibility ordering over the set
of states: at every date the individual considers possible all and only those
states that are most plausible among the ones that are compatible with the
new information.

3. A logic for iterated belief revision

Let N be the set of non-negative integers. We consider a modal proposi-
tional logic based on the following operators: a belief operator Bt and an
information operator It, for every date t ∈ N, and a “global” operator A.2

The intended interpretation is as follows:

Itφ at time t all the individual is informed of is that φ
Btφ at time t (after revising his earlier beliefs in light of the

information just received) the individual believes that φ
Aφ it is true at every state that φ.

2For a discussion of the global (or universal) modality see Goranko and Passy [12].
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The formal language is built in the usual way from a countable set S
of atomic propositions, the connectives ¬ (for “not”) and ∨ (for “or”) and
the modal operators.3 Thus the set Φ of formulas is defined inductively as
follows: q ∈ Φ for every atomic proposition q ∈ S, and if φ, ψ ∈ Φ then all of
the following belong to Φ: ¬φ, φ∨ψ, Aφ and, for every t ∈ N, Btφ and Itφ.

We denote by L the logic determined by the following axioms and rules
of inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for A and Bt (for every t ∈ N):

KA: Aφ ∧A(φ→ ψ) → Aψ
KB: Btφ ∧Bt(φ→ ψ) → Btψ.

3. S5 axioms for A:

TA: Aφ→ φ
5A: ¬Aφ→ A¬Aφ.

4. For every t ∈ N, inclusion axiom for Bt (note the absence of an analogous
axiom for It):

Incl: Aφ→ Btφ.

5. Axioms to capture the non-standard semantics for It:

I1: (Itφ ∧ Itψ) → A(φ↔ ψ)
I2: A(φ↔ ψ) → (Itφ↔ Itψ).

RULES OF INFERENCE:

1. Modus Ponens (MP): φ, φ→ψ
ψ

2. Necessitation for A (NecA): φ
Aφ .

3See, for example, Blackburn et al [3]. The connectives ∧ (for “and”), → (for “if
... then ...”) and ↔ (for “if and only if”) are defined as usual: φ ∧ ψ = ¬ (¬φ ∨ ¬ψ),
φ→ ψ = ¬φ ∨ ψ and φ↔ ψ = (φ→ ψ) ∧ (ψ → φ) .
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Remark 1. We have allowed Itφ to be a well-formed formula for every
formula φ. As pointed out by Friedman and Halpern [9], this may be prob-
lematic. For example, it is not clear how one could be informed of a con-
tradiction. Furthermore, one might want to restrict information to facts by
not allowing Itφ to be a well-formed formula if φ contains any of the modal
operators Bt and It. Without that restriction, in principle we admit situa-
tions like the following: at time t the individual believes that φ and is later
informed that he did not believe that φ: Btφ∧ It+1¬Btφ. It is not clear how
such a situation could arise. However, since our results remain true–whether
or not we impose the restriction- -we have chosen to follow the more general
approach. The undesirable situations can then be eliminated by imposing
suitable axioms.4

On the semantic side, a frame is a collection 〈Ω, {Bt, It}t∈N〉 where Ω is
a set of states and, for every t ∈ N, Bt and It are binary relations on Ω,
whose interpretation is as follows:

αBtβ at time t and state α the individual considers state β possible
αItβ at state α, state β is compatible with the information received

at time t.

Let Bt(ω) = {ω′ ∈ Ω : ωBtω′} denote the set of states that, at date t, the
individual considers possible at state ω. Similarly, It(ω) = {ω′ ∈ Ω : ωItω′}.

As usual the connection between syntax and semantics is given by the
notion of model. Given a frame 〈Ω, {Bt, It}t∈N〉, a model is obtained by
adding a valuation V : S → 2Ω (where 2Ω denotes the set of subsets of Ω,
usually called events) which associates with every atomic proposition p ∈ S
the set of states at which p is true.5 The truth of an arbitrary formula at a
state is then defined inductively as follows (ω � φ denotes that formula φ is

4For example, contradictory information is ruled out by the axiom Itφ→ ¬A¬φ. The
axiom Btφ → ¬It+1¬Btφ rules out being informed that earlier one did not believe φ
when, in fact, one did. Another example of a problematic situation is represented by the
formula It(φ ∧ ¬Btφ) (the individual is informed that φ and that he will not believe φ).
Such a situation cannot arise under standard assumptions about beliefs. For example,
if one imposes the Acceptance axiom (Itφ → Btφ: see below), consistency of beliefs
(Btψ → ¬Bt¬ψ) and positive introspection of beliefs (Btψ → BtBtψ) then it can be
shown that, in every model, for every state ω, date t and formula φ, ω � ¬It(φ ∧ ¬Btφ).

5Note that by making the truth of atomic propositions depend on the state only, rather
than on the state and time, we restrict ourselves to situations of belief revision, where the
objective description of the world does not change over time: only the epistemic state of
the individual changes. The alternative case, where the truth of the atomic propositions
is allowed to change over time, is known in the computer science literature as belief update
(see Katsuno and Mendelzon [15]).
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true at state ω; ‖φ‖ is the truth set of φ, that is, ‖φ‖ = {ω ∈ Ω : ω � φ}):
if q is an atomic proposition, ω � q if and only if ω ∈ V (q),
ω � ¬φ if and only if ω 2 φ,
ω � φ ∨ ψ if and only if either ω � φ or ω � ψ (or both),
ω � Btφ if and only if Bt(ω) ⊆ ‖φ‖,
ω � Itφ if and only if It(ω) = ‖φ‖,
ω � Aφ if and only if ‖φ‖ = Ω.

Remark 2. Note that, while the truth condition for Btφ is the standard one,
the truth condition of Itφ is unusual in that the requirement is It(ω) = ‖φ‖
rather than merely It(ω) ⊆ ‖φ‖. This is what establishes the similarity
between our information operator and the “only knowing” operator discussed
in the literature (see Levesque [18]).

We say that a formula φ is valid in a model if ω � φ for all ω ∈ Ω, that
is, if φ is true at every state. A formula φ is valid in a frame if it is valid in
every model based on that frame. A logic is sound with respect to a class of
frames if every theorem of the logic is valid in every frame in that class; it
is complete with respect to a class of frames if every formula which is valid
in every frame in that class is provable in the logic (that is, it is a theorem).

Remark 3. Note that from (NecA) and (Incl) one obtains necessitation for
Bt as a derived rule of inference: φ

Btφ
. Furthermore, from necessitation and

axiom K one obtains the following derived rule of inference for both A and Bt
(usually referred to as rule RK): φ→ψ

Aφ→Aψ and φ→ψ
Btφ→Btψ

. On the other hand,
the necessitation rule for It is not a rule of inference of logic L. Indeed
necessitation for It is not validity preserving6; neither is rule RK for It.7

Note that, despite the non-standard validation rule, axiom K for It,
namely Itφ ∧ It(φ → ψ) → Itψ, is trivially valid in every frame.8 It follows
from the completeness part of Proposition 4 below that axiom K for It is a
theorem of logic L (a syntactic proof is also easily obtained).

6If φ is a valid formula, then ‖φ‖ = Ω. Let ω ∈ Ω be a state where It(ω) 6= Ω. Then
ω 2 Itφ and therefore Itφ is not valid.

7That is, from the validity of φ→ ψ one cannot infer the validity of Itφ→ Itψ. To see
this, consider the following model: Ω = {α, β}, It(α) = {α}, It(β) = {β}, ‖p‖ = {α} and
‖q‖ = Ω. Then ‖p→ q‖ = Ω, ‖Itp‖ = {α}, ‖Itq‖ = ∅ and thus ‖Itp→ Itq‖ = {β} 6= Ω.

8Proof. Fix a frame, an arbitrary model and a state ω. For it to be the case that ω �
Itφ∧It(φ→ ψ) we need It(ω) = ‖φ‖ and It(ω) = ‖φ→ ψ‖. Now, ‖φ→ ψ‖ = ‖¬φ ∨ ψ‖ =
‖¬φ‖ ∪ ‖ψ‖ and therefore we need the equality ‖φ‖ = ‖¬φ‖ ∪ ‖ψ‖ to be satisfied. This
requires ‖φ‖ = ‖ψ‖ = Ω. Thus if It(ω) = ‖φ‖ = ‖ψ‖ = Ω, then ω � It(φ→ ψ)∧ Itφ∧ Itψ.
In every other case, ω 2 Itφ∧ It(φ→ ψ) and therefore the formula Itφ∧ It(φ→ ψ) → Itψ
is trivially true at ω.
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The following proposition is an extension of the analogous result in the
two-period framework of Bonanno [6]. An outline of the proof is given in
the Appendix.

Proposition 4. Logic L is sound and complete with respect to the class of
all frames 〈Ω, {Bt, It}t∈N〉.

We now consider extensions of logic L. The first extension, denoted by
LQBR, is obtained by adding to L the following axioms:

Qualified Acceptance (QA): (¬Bt¬φ ∧ It+1φ) → Bt+1φ
Persistence (P ) (or No Drop): (¬Bt¬φ ∧ It+1φ) → (Btψ → Bt+1ψ)
Minimality (M) (or No Add): (It+1φ ∧Bt+1ψ) → Bt(φ→ ψ).

One of the axioms of the AGM theory of belief revision is the so-called
Success or Acceptance axiom, which requires that information be believed,
that is, that it be incorporated in the revised beliefs. Our Qualified Accep-
tance axiom is a weakening of this, in that it requires the individual who has
been informed that φ to believe φ only if, before the receipt of information,
he considered φ possible (that is, he did not believe ¬φ). The Persistence
axiom says that if the individual is informed of something that he previously
considered possible, then he continues to believe everything that he believed
before, that is, he cannot drop any beliefs that he had then. Finally, the
Minimality axiom states that beliefs should be revised in a minimal way, in
the sense that no new beliefs should be added unless they are implied by the
old beliefs and the information received.9

Definition 5. A QBR frame is a frame 〈Ω, {Bt, It}t∈N〉 that satisfies the
following property, which we call the Qualitative Bayes Rule: ∀ω ∈ Ω,
∀t ∈ N,

if Bt(ω) ∩ It+1(ω) 6= ∅ then Bt+1(ω) = Bt(ω) ∩ It+1(ω). (QBR)

Property QBR says that if at a state the information received at time
t+1 is compatible with the beliefs the individual had at time t, in the sense
that there are states that he considered possible at date t and are consistent
with the information received at date t+1, then the states that he considers

9For a more in-depth discussion of these three axioms (for example concerning the
seemingly problematic derivability of (It+1φ∧Bt+1φ) → Bt(φ→ Bt+1φ) from Minimality
and positive introspection of beliefs) see [6] (pp. 201-202).

As noted there, the Minimality axiom restricts the new beliefs only when the information
received is not surprising, that is, only if ω � ¬Bt¬φ.
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possible according to the revised beliefs at date t + 1 are precisely those
states. For example, the frames illustrated in Figures 1 and 2 of Section 2
satisfy QBR (vacuously after date 1).

In a probabilistic setting, let Pt,ω be the probability measure over Ω
representing the individual’s beliefs at date t and state ω, let F ⊆ Ω be an
event representing the information received by the individual at date t + 1
and let Pt+1,ω be the posterior probability measure representing the revised
beliefs at date t + 1 and state ω. Bayes’ rule requires that, if Pt,ω(F ) > 0,
then, for every event E ⊆ Ω, Pt+1,ω(E) = Pt,ω(E∩F )

Pt,ω(F ) . Bayes’ rule thus
implies the following (where supp(P ) denotes the support of the probability
measure P ):

if supp(Pt,ω) ∩ F 6= ∅, then supp(Pt+1,ω) = supp(Pt,ω) ∩ F.

If we set Bt(ω) = supp(Pt,ω), F = It+1(ω) and Bt+1(ω) = supp(Pt+1,ω) then
we get the Qualitative Bayes Rule as stated above. Thus in a probabilistic
setting the sentence “the individual believes φ” would be interpreted as “the
individual assigns probability 1 to the event ||φ||”.

The following proposition, proved in the Appendix, is an extension of
the two-period framework of Bonanno [6].

Proposition 6. Logic LQBR is sound and complete with respect to the class
of frames 〈Ω, {Bt, It}t∈N〉 that satisfy the Qualitative Bayes Rule.

We now consider stronger logics than LQBR. Let LWAGM (WAGM
stands for “Weak AGM”) be the logic obtained by adding to L the following
axioms:

Consistent Acceptance (CA): (Itφ ∧ ¬A¬φ) → Btφ
Persistence (P ): (¬Bt¬φ ∧ It+1φ) → (Btψ → Bt+1ψ)
Minimality (M): (It+1φ ∧Bt+1ψ) → Bt(φ→ ψ)
Weak Consistency of beliefs (WC) (Itφ ∧ ¬A¬φ) → (Btψ → ¬Bt¬ψ)

The Consistent Acceptance axiom says that if the agent is informed
of φ and φ is a consistent formula (¬A¬φ) then he believes φ (even if he
previously believed ¬φ). By axiom Incl, Qualified Acceptance can be de-
rived from Consistent Acceptance10 and therefore LWAGM is an extension

10Proof.
1. A¬φ→ Bt¬φ Axiom Incl
2. ¬Bt¬φ→ ¬A¬φ 1, PL
3. (¬Bt¬φ ∧ It+1φ) → (¬A¬φ ∧ It+1φ) 2, PL
4. (¬A¬φ ∧ It+1φ) → Bt+1φ Axiom CA
5. (¬Bt¬φ ∧ It+1φ) → Bt+1φ 3, 4, PL. �
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of LQBR. Axiom WC (which stands for “Weak Consistency of beliefs”) says
that if the agent is presented with consistent information then his beliefs
are consistent, in the sense that he cannot simultaneously believe something
and its negation.

Definition 7. A WAGM frame is a frame 〈Ω, {Bt, It}t∈N〉 that satisfies
the following properties: ∀t ∈ N, ∀ω ∈ Ω,

(1) if It(ω) 6= ∅ then Bt(ω) ⊆ It(ω),
(2) if It(ω) 6= ∅ then Bt(ω) 6= ∅,
(3) the Qualitative Bayes Rule (if Bt(ω) ∩ It+1(ω) 6= ∅
then Bt+1(ω) = Bt(ω) ∩ It+1(ω)).

For example, the frames illustrated in Figures 1 and 2 of Section 2 are
WAGM frames. Clearly every WAGM frame is a QBR frame, but not
vice versa.

The following proposition is proved in the Appendix.

Proposition 8. Logic LWAGM is sound and complete with respect to the
class of WAGM frames.

Our next result shows that logic LWAGM captures the spirit of the AGM
theory in the sense that it satisfies the basic set of AGM postulates whenever
information is not contradictory. Indeed, as pointed out by Friedman and
Halpern [9], it is not clear how information could consist of a contradiction.

In order to establish the relationship between logic LWAGM and the AGM
theory of belief revision we first need to recall the AGMpostulates. Let Γ
be the set of formulas in a propositional language. Given a subset Σ ⊆ Γ,
its PL-deductive closure [Σ]PL (where ‘PL’ stands for ‘Propositional Logic’)
is defined as follows: ψ ∈ [Σ]PL if and only if there exist φ1, ..., φn ∈ Σ such
that (φ1 ∧ ... ∧ φn) → ψ is a truth-functional tautology (that is, a theorem
of Propositional Logic). A belief set is a set K ⊆ Γ such that K = [K]PL.
A belief set K is consistent if K 6= Γ (equivalently, if there is no formula φ
such that both φ and ¬φ belong to K). Given a belief set K (thought of as
the initial beliefs of the individual) and a formula φ (thought of as a new
piece of information), the revision of K by φ, denoted by K∗

φ, is a subset of
Γ that satisfies the following conditions, known as the AGM postulates:

(K*1) K∗
φ is a belief set

(K*2) φ ∈ K∗
φ

(K*3) K∗
φ ⊆ [K ∪ {φ}]PL

(K*4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ K∗
φ

(K*5) K∗
φ = Γ if and only if φ is a contradiction
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(K*6) if φ↔ ψ is a tautology then K∗
φ = K∗

ψ

(K*7) K∗
φ∧ψ ⊆

[
K∗
φ ∪ {ψ}

]PL
(K*8) if ¬ψ /∈ K∗

φ, then
[
K∗
φ ∪ {ψ}

]PL
⊆ K∗

φ∧ψ

The set of postulates (K*1) through (K*6) is called the basic set of
postulates for belief revision (Gärdenfors, [11] p. 55). The next proposition,
proved in the Appendix, shows that every model of logic LWAGM satisfies
the basic set of AGM postulates.

Proposition 9. Fix an arbitrary model based on a WAGM frame (see De-
finition 7). Fix arbitrary state ω and date t and let K = {ψ : ω � Btψ}.
Suppose that there is a formula φ such that ω � It+1φ and ω′ � φ for some
ω′ ∈ Ω (so that φ is a consistent formula). Define K∗

φ = {ψ : ω � Bt+1ψ}.
Then K is a belief set and K∗

φ satisfies the basic AGM postulates (K*1) to
(K*6).

AGM postulates (K*7) and (K*8), require that the revision of K that
includes both information φ and information ψ (that is, K∗

φ∧ψ) ought to be
the same as the expansion of K∗

φ by ψ, so long as ψ does not contradict
the beliefs in K∗

φ. In our framework we are able to model, at every date
and state, only the information that is actually received by the individual
and cannot capture the counterfactual of how the individual would have
modified his beliefs if he had received a different piece of information. Thus
we cannot compare the revised beliefs that the individual holds after first
receiving information φ and subsequently information ψ with the beliefs
he would have had if he had been simultaneously informed of both φ and
ψ. One way to capture the entire set of AGM postulates is to consider a
branching-time framework which allows the comparison of different belief
revisions along different branches. This is done in Bonanno [7]. Here we
follow an indirect route through the notion of plausibility. In the literature
it has been shown that there is an equivalence between the full set of AGM
postulates and the notion of a plausibility ordering of the set of states (see
Grove [13] and Board [4]).

A plausibility ordering of Ω is a binary relation - on Ω that is complete
(∀ω, ω′ ∈ Ω, either ω - ω′ or ω′ - ω) and transitive (if ω - ω′ and ω′ - ω′′

then ω - ω′′). Given a plausibility ordering - of Ω and a subset X ⊆ Ω, we
denote by min-X the set {ω ∈ X : ω - ω′ for all ω′ ∈ X}.

Definition 10. Given a frame 〈Ω, {Bt, It}t∈N〉 and a state ω ∈ Ω, we call the
sequence {Bt(ω), It(ω)}t∈N a belief revision history. A plausibility relation
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- on Ω rationalizes the belief revision history {Bt(ω), It(ω)}t∈N if, for every
t ∈ N, Bt(ω) = min- It(ω).

Thus a belief revision history is rationalized by a plausibility ordering if,
at every date, the set of states that the individual considers possible is the
set of most plausible states among the ones that are compatible with the
information received.

Definition 11. A belief revision history {Bt(ω), It(ω)}t∈N is consistent,
successful and information-refined if it satisfies the following properties:
∀t ∈ N,

(1) Bt(ω) 6= ∅,
(2) Bt(ω) ⊆ It(ω),
(3) It+1(ω) ⊆ It(ω).

For example, in the frame illustrated in Figure 1 of Section 2, for every
state the corresponding belief revision history is consistent, successful and
information-refined.

The following proposition is proved in the Appendix.

Proposition 12. Given a belief revision history H = {Bt(ω), It(ω)}t∈N
which is consistent, successful and information-refined there exists a plausi-
bility relation - that rationalizes H if and only if H is Qualitatively Baye-
sian, that is, if and only if, ∀t ∈ N, if Bt(ω) ∩ It+1(ω) 6= ∅ then Bt+1(ω) =
Bt(ω) ∩ It+1(ω).

With the help of the above proposition we can define a class of frames
with the property that every belief revision history can be rationalized in
terms of a plausibility relation.

Definition 13. A SAGM frame (SAGM stands for “Strong AGM”) is a
frame 〈Ω, {Bt, It}t∈N〉 that satisfies the following properties: ∀t ∈ N, ∀ω ∈ Ω,

(1) Bt(ω) 6= ∅,
(2) Bt(ω) ⊆ It(ω),
(3) It+1(ω) ⊆ It(ω),
(4) the Qualitative Bayes Rule (if Bt(ω) ∩ It+1(ω) 6= ∅
then Bt+1(ω) = Bt(ω) ∩ It+1(ω)).

Clearly, every SAGM frame is a WAGM frame but not vice versa.

The following result is a Corollary of Proposition 12.
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Corollary 14. Let 〈Ω, {Bt, It}t∈N〉 be a SAGM frame. Then, for every
ω ∈ Ω, there exists a plausibility relation - on Ω that rationalizes the belief
history {Bt(ω), It(ω)}t∈N.

For example, the frame illustrated in Figure 1 of Section 2 is a SAGM
frame and, indeed, every belief revision history {Bt(ω), It(ω)}t∈{0,1,2,3} with
ω ∈ {B,V,M,F} is rationalized by the following plausibility ordering (which,
in this case, is independent of the state):

- =
{(B,B),(B,V),(B,F),(B,M),(V,B),(V,V),(V,F),(V,M),(M,F),(M,M),(F,F)}.

The class of SAGM frames corresponds (in the sense of frame correspon-
dence: see Blackburn et al [3]) to the following logic, which we call LSAGM :
the basic logic L with the addition of the following axioms:

Consistency of beliefs (DB): Btφ→ ¬Bt¬φ
Acceptance (A): Itφ→ Btφ
Information refinement (IR): (Itφ ∧ It+1ψ) → A(ψ → φ)
Persistence (P ): (¬Bt¬φ ∧ It+1φ) → (Btψ → Bt+1ψ)
Minimality (M): (It+1φ ∧Bt+1ψ) → Bt(φ→ ψ)

It is straightforward to show that logic LSAGM is an extension (a streng-
thening) of logic LWAGM .

Note that the properties of a SAGM frame are sufficient but not neces-
sary for rationalizability by means of a plausibility relation, as the example
illustrated in Figure 3 shows. The frame of Figure 3 not only violates in-
formation refinement, but is not even a QBR frame, since it violates the
Qualitative Bayes Rule: B1(α) ∩ I2(α) = {β} 6= ∅ and yet B2(α) = {β, γ}.
However the belief revision history {Bt(α), It(α)}t∈{0,1,2} is rationalized by
the following plausibility relation

- = {(α, α), (β, α), (β, β), (β, γ), (γ, α), (γ, β), (γ, γ)}.

The frame illustrated in Figure 4, on the other hand, shows that the
hypothesis of information refinement (It+1 ⊆ It) is crucial for Corollary 14:
the frame satisfies every property of Definition 13 except for information
refinement (property 3) and no belief revision history can be rationalized by
a plausibility relation. In fact, from the beliefs at t = 0 we get that β is more
plausible than α and from the beliefs at t = 2 we get that α is more plausible
than β. This example also shows that the property of information refinement
cannot be weakened as follows: if It+1(ω)∩It(ω) 6= ∅ then It+1(ω) ⊆ It(ω),
since the frame illustrated in Figure 4 satisfies this weaker property.
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Figure 3. A non-QBR frame which is rationalizable
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Figure 4. A QBR frame that violates information refinement
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For a general characterization (which does not require information re-
finement) of the notion of belief revision based on plausibility more general
structures are needed. Such a characterization is provided by Bonanno [7]
within the framework of branching-time temporal logic.

4. Conclusion

The notions of static belief and of belief revision have been studied exten-
sively in the literature. However, there is a surprising lack of uniformity
in the two approaches. In the philosophy and logic literature, starting with
Hintikka’s [14] seminal contribution, the notion of static belief has been stud-
ied mainly within the context of modal logic. The study of belief revision,
on the other hand, has mainly followed the AGM approach where beliefs
are modeled as sets of formulas in a given syntactic language and the issue
is how a belief set ought to be modified when new information, represented
by a formula, becomes available. A yet different approach can be found
in economics and game theory, where it is standard to represent beliefs by
means of a probability measure over a set of states and belief revision is
modeled using Bayes’ rule. With a few exceptions, the tools of modal logic
have not been explicitly employed in the analysis of the interaction of belief
and information over time. In this paper we have proposed a unifying frame-
work for static beliefs and iterated belief revision by bringing iterated belief
revision under the umbrella of modal logic. For a detailed discussion of the
relationship between our approach and the existing literature the reader is
referred to Bonanno [6].

A. Appendix

Outline of the proof of Proposition 4. (This is an extension of the
proof given for the two-date case in Bonanno [6]; thus some of the details
are omitted and can be found there.) Soundness is easily proved. The
completeness proof is first carried out with respect to the class of augmented
frames, which are defined as follows.

Definition 15. An augmented frame is a collection 〈Ω, {Bt, It}t∈N,A〉 ob-
tained by adding an equivalence relation A to a regular frame 〈Ω, {Bt, It}t∈N〉
with the additional requirement that Bt ⊆ A for every t ∈ N.

Let M be the set of maximally consistent sets (MCS) of formulas of L.
Define the following binary relations A,Bt ⊆ M × M: αAβ if and only if
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{φ : Aφ ∈ α} ⊆ β and αBtβ if and only if {φ : Btφ ∈ α} ⊆ β. The relation A
is an equivalence relation because of axioms TA and 5A and, for every t ∈ N,
Bt is a subrelation of A because of axiom Incl. Furthermore, the following
lemma is a consequence of axioms I1 and I2.

Lemma 16. Let α, β ∈ M be such that αAβ and let φ be a formula such that
Itφ ∈ α and φ ∈ β. Then, for every formula ψ, if Itψ ∈ α then ψ ∈ β, that
is, {ψ : Itψ ∈ α} ⊆ β.

The definition of the relation It is more complicated, because of the non-
standard validation rule for the operator It. Let ω0 be an arbitrary object
such that ω0 /∈ M, that is, ω0 can be anything but a MCS. Define the relation
It on M ∪ {ω0} as follows: αItβ if and only if (1) α ∈ M and (2) either
β ∈ M and, for some formula φ, Itφ ∈ α and φ ∈ β, or for all φ, Itφ /∈ α
and β = ω0.

The structure 〈M ∪ {ω0}, {Bt, It}t∈N,A〉 so defined is an augmented fra-
me. For every α ∈ M, let A(α) = {ω ∈ M : αAω}. Consider the canonical
model based on this frame defined by ‖p‖ = {ω ∈ M : p ∈ ω}, for every
atomic proposition p. For every formula φ define ‖φ‖ according to the se-
mantic rules given in Section 3, with the following modified truth conditions
for the operators It and A: α � Itφ if and only if It(α) = ‖φ‖ ∩ A(α) and
α � Aφ if and only if A(α) ⊆ ‖φ‖.

The crucial step in the completeness proof is the following Truth Lemma
(for a proof see Goranko and Passy [12] and Bonanno [6]).

Lemma 17. For every ω ∈ M and for every formula φ, ω � φ if and only if
φ ∈ ω.

With the aid of the above Lemma it can be shown that logic L is complete
with respect to the class of augmented frames 〈Ω, {Bt, It}t∈N,A〉. To com-
plete the proof of Proposition 4, namely that logic L is sound and complete
with respect to the class of frames 〈Ω, {Bt, It}t∈N, 〉, we only need to invoke
the result (Chellas, 1984, Theorem 3.12, p. 97) that completeness with re-
spect to the class of augmented frames (where A is an equivalence relation)
implies completeness with respect to the generated sub-frames (where A is
the universal relation). The latter are precisely what we called frames. In a
frame where the relation A is the universal relation the semantic rule α � Itφ
if and only if It(α) = ‖φ‖∩A(α) becomes α � Itφ if and only if It(α) = ‖φ‖
and the semantic rule α � Aφ if and only if A(α) ⊆ ‖φ‖ becomes α � Aφ if
and only if ‖φ‖ = Ω, since A(α) = Ω.
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Proof. (Proof of Proposition 6).
(A) Validity. Fix a frame 〈Ω, {Bt, It}t∈N〉 that satisfies QBR, that is,

∀ω ∈ Ω,∀t ∈ N, if Bt(ω) ∩ It+1(ω) 6= ∅ then Bt+1(ω) = Bt(ω) ∩ It+1(ω).
By Proposition 4 it is enough to show that the three axioms QA, P and M
are valid in it. Fix an arbitrary model based on this frame and arbitrary
state ω, date t and formulas φ and ψ. First we show that ω � (¬Bt¬φ ∧
It+1φ) → Bt+1φ. Suppose that ω � ¬Bt¬φ∧It+1φ. Then It+1(ω) = ||φ|| and
Bt(ω)∩It+1(ω) 6= ∅. By QBR, Bt+1(ω) ⊆ It+1(ω) and therefore ω � Bt+1φ.
Next we show that ω � (¬Bt¬φ ∧ It+1φ) → (Btψ → Bt+1ψ). Suppose that
ω � ¬Bt¬φ ∧ It+1φ ∧ Btψ. Then It+1(ω) = ||φ||, Bt(ω) ∩ It+1(ω) 6= ∅
and Bt(ω) ⊆ ||ψ|| . By QBR, Bt+1(ω) ⊆ Bt(ω) and therefore ω � Bt+1ψ.
Finally we show that ω � (It+1φ ∧ Bt+1ψ) → Bt(φ → ψ). Suppose that
ω � It+1φ ∧ Bt+1ψ. Then It+1(ω) = ||φ|| and Bt+1(ω) ⊆ ||ψ||. Fix an
arbitrary ω′ ∈ Bt(ω). If ω′ � ¬φ, then ω′ � φ → ψ; if ω′ � φ, then
ω′ ∈ Bt(ω) ∩ It+1(ω) and, by QBR, Bt(ω) ∩ It+1(ω) ⊆ Bt+1(ω), so that
ω′ � ψ and therefore ω′ � φ→ ψ. Hence ω � Bt(φ→ ψ).

(B) Completeness. Let MQBR be the set of maximally consistent sets
(MCS) of formulas of LQBR. By Proposition 4 we only need to show that
the frame associated with the canonical model satisfies QBR. First we
show that

∀t ∈ N,∀ω ∈ MQBR, if Bt(ω) ∩ It+1(ω) 6= ∅ then Bt+1(ω) ⊆ It+1(ω).

Fix an arbitrary α ∈ MQBR and suppose that Bt(α) ∩ It+1(α) 6= ∅. Let
β ∈ Bt(α) ∩ It+1(α). Since Bt(α) ⊆ MQBR, β ∈ MQBR and therefore, by
definition of It, there exists a formula φ such that It+1φ ∈ α and φ ∈ β.
Since β ∈ Bt(α), ¬Bt¬φ ∈ α (see Chellas [8] Theorem 5.6, p. 172). Thus
(It+1φ∧¬Bt¬φ) ∈ α. Since QA is a theorem, (It+1φ∧¬Bt¬φ) → Bt+1φ ∈ α.
Hence Bt+1φ ∈ α. Fix an arbitrary γ ∈ Bt+1(α). By definition of Bt+1,
{ψ : Bt+1ψ ∈ α} ⊆ γ. In particular, since Bt+1φ ∈ α, φ ∈ γ. By definition
of It+1, since It+1φ ∈ α and φ ∈ γ, γ ∈ It+1(α).

Next we show that

∀t ∈ N,∀ω ∈ MQBR, if Bt(ω) ∩ It+1(ω) 6= ∅ then Bt+1(ω) ⊆ Bt(ω).

Fix an arbitrary α ∈ MQBR and suppose that Bt(α) ∩ It+1(α) 6= ∅. Let
β ∈ Bt(α) ∩ It+1(α). As shown above, there exists a φ such that It+1φ ∈ α,
φ ∈ β and ¬Bt¬φ ∈ α. By axiom P , for every formula ψ, (It+1φ∧¬Bt¬φ) →
(Btψ → Bt+1ψ) ∈ α. Thus

(Btψ → Bt+1ψ) ∈ α. (1)
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Fix an arbitrary γ ∈ Bt+1(α). We want to show that γ ∈ Bt(α), that is, that
{ψ : Btψ ∈ α} ⊆ γ. Let ψ be such that Btψ ∈ α. By (1) Bt+1ψ ∈ α and
therefore, ψ ∈ γ (since γ ∈ Bt+1(α) and, by definition of Bt+1, {ψ : Bt+1ψ ∈
α} ⊆ γ).

Finally we show that

∀t ∈ N,∀ω ∈ MQBR, Bt(ω) ∩ It+1(ω) ⊆ Bt+1(ω).

Fix arbitrary α, β ∈ MQBR such that β ∈ Bt(α) ∩ It+1(α). Then, as shown
above, there exists a φ such that It+1φ ∈ α and φ ∈ β. Fix an arbitrary
γ ∈ Bt(α) ∩ It+1(α). We want to show that γ ∈ Bt+1(α), that is, that
{ψ : Bt+1ψ ∈ α} ⊆ γ. Let ψ be an arbitrary formula such that Bt+1ψ ∈ α.
Then (It+1φ∧Bt+1ψ) ∈ α. By axiom M , (It+1φ∧Bt+1ψ) → Bt(φ→ ψ) ∈ α.
Thus Bt(φ → ψ) ∈ α. Since γ ∈ Bt(α), (φ → ψ) ∈ γ. Since It+1φ ∈ α and
γ ∈ It(α), φ ∈ γ. Hence ψ ∈ γ.

Proof. (Proof of Proposition 8). By Proposition 6, it is sufficient to
show that axioms CA and WC are valid in every WAGM frame and that
the canonical model satisfies properties (1) and (2) of Definition 7.

Validity of axioms CA and WC. Fix an arbitrary model based on a
WAGM frame, a state α, a date t and a formula φ and suppose that α �
Itφ ∧ ¬A¬φ. Then It(α) = ||φ|| and there exists a β ∈ Ω such that β � φ.
Thus It(α) 6= ∅ and by property (1) of Definition 7, Bt(α) ⊆ It(α). Thus
Bt(α) ⊆ ||φ||, that is, α � Btφ and axiom CA is valid. By property (2)
of Definition 7, Bt(α) 6= ∅. Fix an arbitrary formula ψ and suppose that
α � Btψ. Since Bt(α) 6= ∅, there exists a γ such that γ ∈ Bt(α). Then γ � ψ
and therefore α � ¬Bt¬ψ. Thus axiom WC is valid.

Proof of completeness. Let MWAGM be the set of maximally consistent
sets of logic LWAGM . In order to prove that properties (1) and (2) hold we
first start with the augmented canonical model
〈MWAGM ∪ {ω0}, {Bt, It}t∈N,A〉 (where A is an equivalence relation) and
show that it satisfies the following property: ∀ω ∈ MWAGM , ∀t ∈ N, if
It(ω)∩A(ω) 6= ∅ then Bt(ω) ⊆ It(ω)∩A(ω) and Bt(ω) 6= ∅ . Fix arbitrary
α ∈ MWAGM and t ∈ N and suppose that It(α) ∩ A(α) 6= ∅. Let β ∈
It(α) ∩ A(α). Since β ∈ A(α), β ∈ MWAGM ; hence (since β ∈ It(α)) by
definition of It there exists a φ such that Itφ ∈ α and φ ∈ β. Since β ∈ A(α),
¬A¬φ ∈ α. Thus Itφ ∧ ¬A¬φ ∈ α. Since (Itφ ∧ ¬A¬φ) → Btφ is an axiom
of LWAGM , (Itφ ∧ ¬A¬φ) → Btφ ∈ α. Thus Btφ ∈ α. Fix an arbitrary
γ ∈ Bt(α). Then, by definition of Bt, φ ∈ γ and, since Bt is a subrelation of
A, γ ∈ A(α). Since Itφ ∈ α and φ ∈ γ, by definition of It, γ ∈ It(α). Hence
Bt(α) ⊆ It(α)∩A(α). Since (Itφ∧¬A¬φ) → (Btψ → ¬Bt¬ψ) is a theorem,
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it belongs to α. Thus, for every formula ψ, (Btψ → ¬Bt¬ψ) ∈ α. It follows
from this (see Chellas [8]) that Bt(α) 6= ∅. As in the proof of Proposition 4,
the proof is completed by taking the sub-frame generated by α.

Proof. (Proof of Proposition 9.) (K*1). The proof that K is deduc-
tively closed (a belief set) is similar to the proof thatK∗

φ is deductively closed,

so will only prove the latter. We need to show that K∗
φ =

[
K∗
φ

]PL
. Clearly,

K∗
φ ⊆

[
K∗
φ

]PL
, since ψ → ψ is a tautology. Thus we only need to show

that
[
K∗
φ

]PL
⊆ K∗

φ. Let ψ ∈
[
K∗
φ

]PL
, that is, there exist φ1, ..., φn ∈ K∗

φ

such that (φ1 ∧ ... ∧ φn) → ψ is a tautology. Then, by Necessitation of
Bt+1 (see Remark 3), Bt+1((φ1 ∧ ... ∧ φn) → ψ) is a theorem of LWAGM

and therefore, by Proposition 8, it is valid in the given model, so that
ω � Bt+1 ((φ1 ∧ ... ∧ φn) → ψ). By definition of K∗

φ, since φ1, ..., φn ∈ K∗
φ,

ω � Bt+1 (φ1 ∧ ... ∧ φn) . By axiom KB, ω � Bt+1 ((φ1 ∧ ... ∧ φn) → ψ) ∧
Bt+1 (φ1 ∧ ... ∧ φn) → Bt+1ψ. Thus ω � Bt+1ψ, that is, ψ ∈ K∗

φ.

(K*2). By hypothesis, there exists an ω′ ∈ Ω such that ω′ � φ. Hence
ω � ¬A¬φ. Since (It+1φ ∧ ¬A¬φ) → Bt+1φ is an axiom of LWAGM , it is
valid in the given model and, therefore, ω � (It+1φ∧¬A¬φ) → Bt+1φ. Thus,
since, by hypothesis, ω � It+1φ, ω � Bt+1φ, that is, φ ∈ K∗

φ.

(K*3). Let ψ ∈ K∗
φ, i.e. ω � Bt+1ψ. By axiom M , ω � (It+1φ ∧ Bt+1ψ) →

Bt(φ → ψ). By hypothesis, ω � It+1φ. Thus ω � Bt(φ → ψ), that is,
(φ→ ψ) ∈ K. Hence {φ, (φ→ ψ)} ∈ K ∪{φ} and, since (φ ∧ (φ→ ψ)) → ψ
is a tautology, ψ ∈ [K ∪ {φ}]PL.

(K*4). Suppose ¬φ /∈ K, that is, ω � ¬Bt¬φ. By axiom P , for every formula
ψ, ω � (It+1φ ∧ ¬Bt¬φ) → (Btψ → Bt+1ψ). Thus, since by hypothesis
ω � It+1φ,

ω � (Btψ → Bt+1ψ) for every formula ψ. (2)

Let χ ∈ [K ∪ {φ}]PL, that is, there exist φ1, ..., φn ∈ K ∪ {φ} such that
(φ1 ∧ ... ∧ φn) → χ is a tautology. We want to show that χ ∈ K∗

φ, i.e. ω �
Bt+1χ. Since (φ1 ∧ ... ∧ φn) → χ is a tautology, ω � Bt ((φ1 ∧ ... ∧ φn) → χ).
If φ1, ..., φn ∈ K, then ω � Bt (φ1 ∧ ... ∧ φn) and therefore (by axiom KB)
ω � Btχ. Thus, by (2), ω � Bt+1χ. If it is not the case that φi ∈ K for all
i = 1, ..., n, then, by renumbering the formulas if necessary, we can assume
that φ1 = φ and φ2, ..., φn ∈ K. In this case we have ω � Bt (φ2 ∧ ... ∧ φn)
and ω � Bt ((φ2 ∧ ... ∧ φn) → (φ→ χ)) since (φ ∧ φ2 ∧ ... ∧ φn) → χ is a
tautology and it is equivalent to (φ2 ∧ ... ∧ φn) → (φ→ χ). Thus (by axiom
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KB) ω � Bt (φ→ χ) . Hence, by (2) (with ψ = (φ→ χ)), ω � Bt+1 (φ→ χ) .
By axiom CA, ω � (It+1φ ∧ ¬A¬φ) → Bt+1φ. By hypothesis ω � It+1φ ∧
¬A¬φ. Hence ω � Bt+1φ. If follows from axiom KB that ω � Bt+1χ.

(K*5). We have to show that K∗
φ 6= Γ (since, by hypothesis, we have ruled

out the possibility that φ is a contradiction). By (K*1) K∗
φ =

[
K∗
φ

]PL
.

By hypothesis, ω � It+1φ ∧ ¬A¬φ and therefore, by axiom WC, for every
formula ψ, ω � Bt+1ψ → ¬Bt+1¬ψ. Thus, since ω � Bt+1(p ∨ ¬p) (because
(p ∨ ¬p) is a tautology), ω � ¬Bt+1¬(p ∨ ¬p), so that ¬(p ∨ ¬p) /∈ K∗

φ and
hence K∗

φ 6= Γ.

(K*6). We have to show that if φ ↔ ψ is a tautology then K∗
φ = K∗

ψ.
If φ ↔ ψ is a tautology, then ‖φ↔ ψ‖ = Ω, that is, ‖φ‖ = ‖ψ‖. Thus
ω � It+1φ if and only if ω � It+1ψ. Hence, by definition of K∗

φ, K
∗
φ = K∗

ψ.

In order to prove Proposition 12 we need some preliminary results.

Lemma 18. Let - be a complete and transitive binary relation on Ω and
X ⊆ Y ⊆ Ω. If (min- Y ) ∩X 6= ∅ then min-X = (min- Y ) ∩X.

Proof. First we show that (min- Y ) ∩X ⊆ min-X. Let β ∈ (min- Y ) ∩
X. Then β ∈ X and β - γ for all γ ∈ Y. Since X ⊆ Y, it follows that
β ∈ min-X. Next we show that if (min- Y ) ∩ X 6= ∅ then min-X ⊆
(min- Y ) ∩X. Let β ∈ (min- Y ) ∩X. Fix an arbitrary γ ∈ min-X. Then
γ ∈ X and γ - β. Suppose that γ /∈ min- Y . Then there exists a δ ∈ Y
such that δ ≺ γ (that is, δ - γ and γ 6- δ). By transitivity (since γ - β),
δ ≺ β, contradicting the fact that β ∈ min- Y .

Lemma 19. Let {Bt(α), It(α)}t∈N be a belief revision history that satisfies
information refinement (that is, ∀t ∈ N, It+1(α) ⊆ It(α)). Let t0, t1 ∈ N
with t0 < t1 and suppose that, Bt0(α) ∩ It1(α) 6= ∅. Then, for every t ∈ N
with t0 < t ≤ t1, Bt0(α) ∩ It(α) 6= ∅.

Proof. Fix a t such that t0 < t ≤ t1. By information refinement, It1(α) ⊆
It1−1(α) ⊆ ... ⊆ It(α). Thus Bt0(α)∩It1(α) ⊆ Bt0(α)∩It(α). By hypothesis,
Bt0(α) ∩ It1(α) 6= ∅.

Lemma 20. Let {Bt(α), It(α)}t∈N be a belief revision history which (1) is
Qualitatively Bayesian, that is, ∀t ∈ N, if Bt(α)∩It+1(α) 6= ∅ then Bt+1(α)
= Bt(α) ∩ It+1(α) and (2) satisfies information refinement, that is, ∀t ∈ N,
It+1(α) ⊆ It(α). Let T0, T1 ∈ N be such that T0 < T1 and, ∀t ∈ N with
T0 < t ≤ T1, BT0(α) ∩ It(α) 6= ∅. Then, ∀t ∈ N with T0 < t ≤ T1,
Bt(α) = BT0(α) ∩ It(α).
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Proof. We prove it by induction. The statement is clearly true for t =
T0 + 1, since by hypothesis BT0(α) ∩ IT0+1(α) 6= ∅ and by the Qualitative
Bayes Rule (QBR) BT0+1(α) = BT0(α) ∩ IT0+1(α). If T1 = T0 + 1 there
is nothing else to prove. Suppose therefore that T1 > T0 + 1 and proceed
with the induction step: suppose that the statement is true for every t ∈
N with T0 < t ≤ T (with T < T1). We want to show that it is true
for t = T + 1. By the induction hypothesis, BT (α) = BT0(α) ∩ IT (α).
Thus BT (α) ∩ IT+1(α) = BT0(α) ∩ IT (α) ∩ IT+1(α). Since, by hypothesis,
IT+1(α) ⊆ IT (α), IT+1(α) ∩ IT (α) = IT+1(α). Thus

BT (α) ∩ IT+1(α) = BT0(α) ∩ IT+1(α). (3)

By hypothesis, BT0(α) ∩ IT+1(α) 6= ∅. Hence, by (3),

BT (α) ∩ IT+1(α) 6= ∅. (4)

It follows from QBR that

BT+1(α) = BT (α) ∩ IT+1(α). (5)

From (3) and (5) we get that BT+1(α) = BT0(α) ∩ IT+1(α).

Lemma 21. Let {Bt(α), It(α)}t∈N be a belief revision history which is Qual-
itatively Bayesian and satisfies information refinement. Let t0, t1 ∈ N with
t0 < t1 and suppose that, ∀t ∈ N with t0 < t ≤ t1, Bt−1(α) ∩ It(α) 6= ∅.
Then, ∀t ∈ N with t0 < t ≤ t1, Bt0(α) ∩ It(α) 6= ∅.

Proof. We prove it by induction. The statement is true for t = t0+1 since,
by hypothesis, Bt0(α) ∩ It0+1(α) 6= ∅. Now the induction step. Let T < t1
and suppose that the statement is true for all t up to T , that is,

∀t ∈ N with t0 < t ≤ T , Bt0(α) ∩ It(α) 6= ∅. (6)

We want to show that it is true for t = T+1, that is, that Bt0(α)∩IT+1(α) 6=
∅. By (6) and Lemma 20 (with T0 = t0 and T1 = T ),

BT (α) = Bt0(α) ∩ IT (α). (7)

Thus
BT (α) ∩ IT+1(α) = Bt0(α) ∩ IT (α) ∩ IT+1(α). (8)

Since, by hypothesis, IT+1(α) ⊆ IT (α), IT (α) ∩ IT+1(α) = IT+1(α). It
follows from this and (8) that

BT (α) ∩ IT+1(α) = Bt0(α) ∩ IT+1(α). (9)

Since, by hypothesis, BT (α)∩IT+1(α) 6= ∅, it follows from (9) that Bt0(α)∩
IT+1(α) 6= ∅.
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Corollary 22. Let {Bt(α), It(α)}t∈N be a belief revision history which is
Qualitatively Bayesian and satisfies information refinement. Let t0, t1 ∈ N
with t0 < t1 and suppose that Bt0(α)∩It1(α) = ∅. Then there exists a t ∈ N
with t0 < t ≤ t1 such that Bt−1(α) ∩ It(α) = ∅.

Proof. If not, then, for every t with t0 < t ≤ t1, Bt−1(α) ∩ It(α) 6= ∅ and
by Lemma 21 Bt0(α) ∩ It1(α) 6= ∅, yielding a contradiction.

Lemma 23. ∀t, t′ ∈ N, ∀ω′ ∈ Ω, if ω′ ∈ It(α)\Bt(α) and ω′ ∈ Bt′(α) then
t′ > t and Bt(α) ∩ It′(α) = ∅.

Proof. First we prove that t′ > t. Let ω′ ∈ It(α)\Bt(α) and ω′ ∈ Bt′(α).
Then ω′ ∈ Bt′(α) ∩ It(α), so that t 6= t′ and Bt′(α) ∩ It(α) 6= ∅. If t′ < t,
then by Lemmas 19 and 20, Bt(α) = Bt′(α) ∩ It(α), so that ω′ ∈ Bt(α),
contradicting the hypothesis that ω′ ∈ It(α)\Bt(α). Thus t′ > t. Next we
prove that Bt(α) ∩ It′(α) = ∅. Suppose that Bt(α) ∩ It′(α) 6= ∅. Then
by Lemmas 19 and 20 Bt′(α) = Bt(α) ∩ It′(α), so that Bt′(α) ⊆ Bt(α),
contradicting the hypothesis that ω′ ∈ Bt′(α) and ω′ ∈ It(α)\Bt(α).

Proof. Proof of Proposition 12.
First we prove that if {Bt(α), It(α)}t∈N is information-refined (∀t ∈ N,
It+1(α) ⊆ It(α)) and - rationalizes {Bt(α), It(α)}t∈N then {Bt(α), It(α)}t∈N
is Qualitatively Bayesian. Fix an arbitrary t ∈ N such that Bt(α)∩It+1(α) 6=
∅. By hypothesis, Bt(α) = min- It(α) and Bt+1(α) = min- It+1(α). Since
It+1(α) ⊆ It(α) it follows from Lemma 18 (with X = It+1(α) and Y =
It(α)) that Bt+1(α) = Bt(α) ∩ It+1(α).

Next we prove that if {Bt(α), It(α)}t∈N is consistent, successful, infor-
mation-refined and Qualitatively Bayesian then there exists a plausibility
relation - on Ω that rationalizes it. Define the function rank : Ω → N
as follows:

rank(ω) = 0 if ω ∈ B0(α)
= ∞ if ω ∈ Ω \

⋃
t∈N Bt(α)

= t if ω ∈ Bt(α) and Bt−1(α) ∩ It(α) = ∅.

First we show that this function’s domain is indeed Ω. Fix arbitrary t′ ∈
N\{0} and ω ∈ Bt′(α). If Bt′−1(α) ∩ It′(α) = ∅ then rank(ω) = t′. If
Bt′−1(α) ∩ It′(α) 6= ∅ let T = {t ∈ N : t < t′ and Bt−1(α) ∩ It(α) = ∅}.
If T = ∅, then, by Lemma 21 (with t0 = 0 and t1 = t′), for every t ∈ N
with 0 < t ≤ t′, B0(α) ∩ It(α) 6= ∅. It follows from this and Lemma 20
that Bt′−1(α) ∩ It′(α) = B0(α) ∩ It′(α). By the Qualitative Bayes Rule
(since, by hypothesis, Bt′−1(α) ∩ It′(α) 6= ∅), Bt′(α) = Bt′−1(α) ∩ It′(α).
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Thus Bt′(α) = B0(α)∩It′(α) and therefore ω ∈ B0(α), so that rank(ω) = 0.
If T 6= ∅, let tmax = maxT . Then

Btmax−1(α) ∩ Itmax(α) = ∅. (10)

Since, by hypothesis, Bt′−1(α)∩It′(α) 6= ∅ it follows from (10) that tmax < t′.
Furthermore, by definition of tmax,

∀t ∈ N with tmax < t ≤ t′, Bt−1(α) ∩ It(α) 6= ∅. (11)

By Lemma 21 (with t0 = tmax and t1 = t′), for every t such that tmax <
t ≤ t′, Btmax(α) ∩ It(α) 6= ∅. It follows from this and Lemma 20 that
Bt′−1(α)∩ It′(α) = Btmax(α)∩ It′(α). By the Qualitative Bayes Rule (since,
by hypothesis, Bt′−1(α) ∩ It′(α) 6= ∅), Bt′(α) = Bt′−1(α) ∩ It′(α). Thus
Bt′(α) = Btmax(α) ∩ It′(α) and therefore ω ∈ Btmax(α), so that, by (10) and
the definition of the function rank, rank(ω) = tmax.

Now define the binary relation - on Ω as follows: ω - ω′ if and only
if rank(ω) ≤ rank(ω′) (with the convention that n < ∞ for every n ∈ N).
Clearly - is complete and transitive. Now we show that - rationalizes
{Bt(α), It(α)}t∈N. Fix an arbitrary t. We want to show that Bt(α) =
min- It(α), that is, (1) for every ω ∈ Bt(α) and for every ω′ ∈ It(α),
rank(ω) ≤ rank(ω′) and (2) if ω ∈ It(α) is such that, for every ω′ ∈ It(α),
rank(ω) ≤ rank(ω′), then ω ∈ Bt(α). Recall that, by hypothesis the belief
history is consistent and successful, so that, for every t, ∅ 6= Bt(α) ⊆ It(α).

The proof is by induction. The statement is true for t = 0 since (1)
∅ 6= B0(α) ⊆ I0(α) and (2) by construction rank(ω) ≥ 0 for every ω ∈ Ω
and rank(ω) = 0 if and only if ω ∈ B0(α). Now let t0 ≥ 0 and suppose that
the statement is true for every t ≤ t0, that is, for every such t, Bt(α) =
min- It(α). Then for every t ≤ t0 there exists an nt ∈ N such that

∀ω ∈ Bt(α), rank(ω) = nt and ∀ω ∈ It(α)\Bt(α), rank(ω) > nt. (12)

We want to show that the same is true for t = t0 + 1. We need to consider
two cases.
CASE 1: Bt0(α) ∩ It0+1(α) 6= ∅. By (12) there exists an nt0 ∈ N such
that ∀ω ∈ Bt0(α), rank(ω) = nt0 and ∀ω ∈ It0(α)\Bt0(α), rank(ω) > nt0 .
Since Bt0(α) ∩ It0+1(α) 6= ∅, by the Qualitative Bayes Rule, Bt0+1(α) =
Bt0(α) ∩ It0+1(α) it follows from this and the fact that It0+1(α) ⊆ It0(α),
that (1) ∀ω ∈ Bt0+1(α), rank(ω) = nt0 and (2) ∀ω ∈ It0+1(α)\Bt0+1(α),
rank(ω) > nt0 .

11 Thus Bt0+1(α) = min- It0+1(α).

11Let ω ∈ It0+1(α)\Bt0+1(α). Since It0+1(α) ⊆ It0(α), ω ∈ It0(α). If ω /∈ Bt0(α), then
rank(ω) > nt0 . If ω ∈ Bt0(α) then ω ∈ Bt0(α) ∩ It0+1(α) which, by QBR, implies that
ω ∈ Bt0+1(α), contradicting the hypothesis that ω ∈ It0+1(α)\Bt0+1(α).
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CASE 2: Bt0(α) ∩ It0+1(α) = ∅. By definition of rank, ∀ω ∈ Bt0+1(α),
rank(ω) = t0 + 1. We need to show that if ω′ ∈ It0+1(α)\Bt0+1(α) then
rank(ω′) > t0 + 1. If ω′ ∈ Ω \

⋃
t∈N Bt(α) then, by definition of rank,

rank(ω′) = ∞. Suppose, therefore, that ω′ ∈ Bt′(α) for some t′. By Lemma
23, t′ > t0 + 1 and Bt0+1(α)∩It′ = ∅. Hence, by Corollary 22 there exists a
t1 ∈ N with t0 + 1 < t1 ≤ t′ such that Bt1−1(α) ∩ It1(α) = ∅. If ω′ ∈ Bt1(α)
then, by definition of rank, rank(ω′) = t1 > t0 + 1. If ω′ /∈ Bt1(α) then
t1 6= t′ and therefore t1 < t′. By Corollary 22 it follows from this and the
fact that Bt1−1(α) ∩ It1(α) = ∅, that there exists a t2 ∈ N with t1 < t2 ≤ t′

such that Bt2−1(α) ∩ It2(α) = ∅. If ω′ ∈ Bt2(α) then, by definition of rank,
rank(ω′) = t2, otherwise a finite repetition of this argument yields that
rank(ω′) = t for some t such that t ≥ t1 > t0 + 1.
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