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Within a slightly modified version of Hotelling’s model we reconsider the claim that the
threat of entry induces existing firms to produce a larger number of products than they would
otherwise. We show that entry deterrence, although optimal, need not be achieved through product
proliferation. In some cases the incumbent monopolist resorts to an entry-deterring strategy based
on location choice rather than product proliferation. We also show that in some cases the number
of products chosen by the incumbent facing the threat of entry is strictly greater than the minimum
number required to deter entry.

1. INTRODUCTION

It has often been claimed in the literature (see, especially, Hay (1976), Prescott and
Visscher (1977) and Schmalensee (1978)) that the threat of entry induces existing firms
to produce a larger number of products than they would otherwise. This ‘“product
proliferation” strategy—it is claimed—has the effect of “crowding out” prospective
entrants, even though it leads to inefficient production when there are increasing returns
to scale in the production of each brand. However, no satisfactory proof of this claim
has been given so far.' The purpose of this paper to re-examine the notion of product
proliferation and to point out the possibility of more profitable forms of entry deterrence.

We provide an example based on a slightly modified version of Hotelling’s (1929)
model (quadratic transportation costs, positive set-up cost for each “store”, finite reserva-
tion price). We consider a three-stage game between an incumbent monopolist and a
potential entrant. In stage 1 the incumbent decides how many “stores” to open and
where to locate them. In stage 2 the potential entrant (having observed the action taken
by the incumbent) decides whether to enter or not and—if he decides to enter—where
to locate his store. Finally, in stage 3 incumbent and entrant compete in prices. The
structure of the game is intended to capture the notion that prices can in practice be
changed at will, while entry into the industry requires the construction of one or more
plants. We look at the sub-game perfect equilibria (Selten (1975)) of the game.

The assumption that the entrant contemplates entry with only one store—although
commonly made in the literature—is far from satisfactory, but was dictated by the need
to make the computation of the Bertrand-Nash equilibria tractable. However, it is worth
stressing that the purpose of this paper is not to provide a very general analysis but to
show—by means of an example—that there may be better entry-deterring strategies than
product proliferation.

The main result is that entry deterrence is indeed optimal, but it need not be achieved
through product proliferation. In fact, for some values of the parameters, the number of
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stores opened by the incumbent at the unique perfect equilibrium of the game is equal
to the number opened by a protected monopolist who does not face the threat of entry,
but the locations of these stores are different. This can be interpreted as an entry-deterring
strategy based on product specification (or location choice) as opposed to product
proliferation.

One more feature of the model, worth noting here, is the following. The number of
stores opened by the incumbent facing the threat of entry may be strictly greater than the
minimum number of stores required to deter entry.

The paper is organized as follows. In Section 2 we outline the model and in Section
3 we determine the optimum number (and location) of stores for a protected monopolist.
In Sections 4 and 5 we determine the Betrand-Nash equilibria for any possible location
pattern of two or three stores, owned by two different players. In Section 6 we determine
the minimum number of stores required to deter entry and the main results are proved
in Section 7.

2. THE MODEL

We consider a linear market of unit length, represented by the interval [0, 1]. There are
n=1 stores located on this line, each selling a homogeneous product. We denote by x;
the location of store i (i=1,...,n). The following assumption is introduced merely in
order to simplify the analysis and our results do not depend on it.

Assumption 1. It is not possible for two stores to be located at the same point, that
is, i #j implies x; # x;.

We number stores in such a way that x; <x;.,. Therefore we have
0=x,<x,<: <x,1<x,=1. (1)
We denote by p; the mill price of store i.

Assumption 2. Consumers are uniformly distributed along the line and face a

quadratic transportation cost given by
C(d)=cd? c>0 2)
where d is distance travelled.

Assumption 3. Each consumer buys exactly one unit of the good if and only if there
is at least one store which offers him a delivered price (that is, mill price plus transportation
cost) which is less than r, where r is a positive number which we call the reservation price
(common to all consumers). If a consumer buys the good, he buys it from the store which
offers the least delivered price. Throughout the paper we shall assume that r is relatively

large (by this we mean that r = 3c¢/4 (see Section 3) and r is large enough for all consumers
to buy at the equilibrium (see Sections 4 and 5)).

Finally, we introduce the following assumption about costs.

Assumption 4. There is a positive set-up cost for each store, which we denote by
K, while the marginal cost of production is zero.’
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3. THE OPTIMUM NUMBER OF STORES FOR A PROTECTED MONOPOLIST

In this Section we consider the case of a protected monopolist, that is, of a monopolist
who does not face the threat of entry. A proof of (a more general version of) the following
Proposition can be found in Bonanno (19854, b).*

Proposition 1. Let r=3c/4. Then the maximum revenue which a protected monopolist
can obtain from n=1 stores is given by

R*(n)=r—c/(4n”) (3)
and there is a unique revenue-maximizing vector of locations and prices given by
x;=(2i—1)/(2n), i=1,...,n (4)
and
pi=r—c/(4n?). (5)

Thus the optimal strategy for a protected monopolist selling n products is to choose
regularly spaced varieties at a uniform price.

The function R*(n) given by (3) is strictly increasing and concave in n. It follows
that the optimal number of stores for a protected monopolist will be that unique number
n* satisfying

{R*(n*)—-R*(n*—-l)zK ©)

R*(n*+1)-R*(n*) <K

The optimal number of stores n* as a function of K is illustrated in Figure 1.

2 stores at 1/4 and 3/4 1 storeat O (not

the centre profitable)
[ r——=—"\r——----
[ V! Vi
I ! \
| 1ssc sc 2sc |,' W
| 3coo KT aa § ' K
1] ]
Y S¢ 1 1ac | ac 3¢ r-S
1aa | Bzes l: 25 "; 18 a
\
1 ,'l ! 'l
Lol —

2 stores 2 stores 1 store at the centre
at a and at 1/4 and
1-a with 3/4

ae[1/5.14)
FIGURE 1

The upper part gives the number and location of stores for a protected monopolist (when r=3c/4). The lower
part gives the minimum number of stores required to deter entry, with the respective locations

In order to determine the perfect equilibria of the game explained in the Introduction,
we first need to compute the Bertrand-Nash equilibria of the last-stage game. This is
done in the following two Sections.

4. BERTRAND-NASH EQUILIBRIUM WITH TWO STORES

Let there be two stores, 1 and 2, owned by two different players. The statements of the
following Proposition and Corollary can be found, without proof, in D’Aspremont et al.
(1979) (however, the authors follow Hotelling (1929) more closely and use a different
notation to ours). A proof can be found in Bonanno (1985a, b).
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Proposition 2. Assume that players maximize revenue. Then for every pair of locations
(x1, x5), with 0= x,; <x,=1, there exists a unique Bertrand - Nash equilibrium (BNE) with
corresponding revenues

121=(c/18)(x2—x1)(2+x1+x2)2>o (i)
Ry =(c/18)(x— x,)(4— X, — x,)*> 0. (8)

Corollary 3. For every pair of locations (x,, x,), with 0= xl <x,=1 vwe have that
aR,/0x,<0 and 3R,/3x,>0. 9)

Therefore, given the location of the competing store, each player maximizes his BNE revenue
by locating as far as possible from the competing store (i.e. at one extreme of the market).

5. BETRAND-NASH EQUILIBRIUM WITH THREE STORES, TWO OF WHICH
ARE OWNED BY THE SAME PLAYER

We shall now consider the case where there are three stores in the market, owned by two
different players. A proof of the following Propositions can be found in Bonanno
(19854, b).

Proposition 4. Let player I own store 1 and player II own stores 2 and 3 and assume
that players maximize revenue. Then for every triple of locations (x,, x,, x3), with 0=x, <
x,<x3=1, there exists a unique BNE at which player I's revenue is given by

R; =(c/18)(x,—x,)(2+ x;+ x,)*> 0. (10)

Comparing (10) with (7) we can conclude that from the point of view of the owner
of store 1 it is immaterial whether the owner of store 2 owns that store only or also
another store further away: the equilibrium revenue of store 1 will be the same in both
cases. Note, again, that '

aR;/3x,<0 (11)

and therefore the best location for store 1 is x; =0.
Given the symmetry of the model, Proposition 4—with the necessary amendments—
covers also the case where player I owns store 3, while player II owns stores 1 and 2.

Proposition 5. Let player I own store 2 and player I1I own stores 1 and 3 and assume
that players maximize revenue. Then for every triple of locations (x,, x,, x3), with 0=x, <
x,<x3=1, there exists a unique BNE at which player I's revenue is given by

RY = c(x,— x1) (33— %) (2+ x3— %)%/ (18(3x3 — x,)) > 0. (12)

Corollary 6. For every pair of locations (x,, x;) of stores 1 and 3, with 0=x, <x;=1,
the equilibrium revenue of player I (store 2), RY, is maximized when

X =(%+x3)/2 (13)

that is, when player I locates his store exactly half-way between the two stores of player II.

We can now turn to the question of entry deterrence.
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6. THE MINIMUM NUMBER OF STORES REQUIRED TO DETER ENTRY

In this Section we determine the minimum number of stores required to deter entry for
a range of values of the set-up cost K.

By Proposition 2 and Corollary 3 we know that if the incumbent has opened one
store, the entrant would locate his store as far as possible from the incumbent’s store and
his revenue would be given by the maximum between R)|;,—o and Ry, -1 (where R, and
R, are given by (7) and (8), respectively). The minimum of the max {R1|xl —0» Ralsy=1} is
25c¢/144, which corresponds to the case where the incumbent’s store is located at the
centre of the market. Therefore, if

K>%c¢

one store located at the centre of the market is sufficient to deter entry.

Now consider the case where the incumbent has opened two stores. By Propositions
4 and 5 and Corollary 6, the entrant would locate his store either half-way between the
incumbent’s stores or at one extreme of the market, depending on- where he would obtain
the highest revenue. Without loss of generality we can assume that the incumbent’s stores
are located at .

x;=a and x;=1-—a, withae[0,3). (14)

Then entry at one extreme of the market would yield a revenue of
_ a(2+a)’c
R=—"7T—" 15
.18 (15)

(using (10) and (14)), while entry half-way between the incumbent’s stores would yield

a revenue of

RO; (1-2a)(3—-2a)’c
- 72

(16)

(using (12), (13) and (14)). The functions R and R° are shown i 1n Flgure 2. The minimum
of the max {R, R is given by 169¢/3000, achieved when a'=1%. Therefore, if

31060?OC<K <144C (17)
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The entrant’s revenue if he enters at one extreme (R) or half-way between the incumbent’s stores (R®), when
the latter are located at x, = a and x,=1—a, with a€[0,3)
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two stores located at x, =a and x,=1—a with a €[4, 1] (depending on the value of K)
are sufficient to deter entry. The bottom part of Figure 1 illustrates these results. We can
now prove our main results.

7. PERFECT EQUILIBRIA AND ENTRY DETERRENCE

We now determine the perfect equilibria of the game for a range of values of K. The
first Proposition shows that when

lg—gc<K<r—-§ (18)

the number and locations of the stores opened by the incumbent facing the threat of entry
coincide with the number and locations chosen By a protected monopolist. Therefore, in
Bain’s terminology (Bain (1956)), entry is blockaded. In other words, in the range given
by (18) the fixed cost K acts as an “innocent” barrier to entry (Salop (1979)).

Proposition 7. If
3 c
<K< r—z (19)

the game has a unique perfect equilibrium at which the incumbent opens one store at the
centre of the market and makes positive profits, while entry is blockaded. If

me<K <Ze (20)

the game has a unique perfect equilibrium at which the incumbent opens two stores at § and
3 and makes positive profits, while entry is blockaded.

Comparing the result of the second part of Proposition 7 with Figure 1 we can draw
an interesting conclusion. When

ZBe<K<ic (21)

the number of stores opened by the incumbent at the unique perfect equilibrium of the
game (two) is strictly greater than the minimum number of stores required to deter entry
(one).

The main result of the paper, given in Proposition 8, is that for some values of the
parameters the number of stores opened by the incumbent facing the threat of entry
coincides with the number of 'stores chosen by a protected monopolist, but the locations
of these stores are different. As said in the Introduction, this can be interpreted as an
entry-deterring strategy based on product specification (or location choice) as opposed to
product proliferation (thus in this case the set-up costs (2K ) appear as a strategic barrier
to entry (Salop (1979))).°

Proposition 8. If

o< K <z (22)

the game has a unique perfect equilibrium at which the incumbent opens two stores, makes
positve profits and entry is deterred. ‘The locations of these stores are different from the
locations chosen by a protected monopolist.
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The intuition behind Proposition 8 is as follows. When K belongs to the interval
(22), a protected monopolist would open two stores at 3 and 3. Given such a regular
spacing, the entrant’s revenue would be greater if he entered at one extreme of the market
than if he entered half-way between the incumbent’s stores, the reason being that in the
first case he would virtually be competing with only one store (cf. Proposition 4) while
in the second case he would be competing with both stores (cf. Proposition 5). When K
belongs to the interval (22), the entrant’s profits—if he enters at one extreme of the
market—will be positive. The incumbent can reduce those profits from positive to negative
by moving his stores towards the extremes, thereby increasing the degree of competition
faced by the entrant at one extreme (however, this process must stop at the point where
entry at the centre becomes more profitable than entry at one extreme). The loss of profits
implied by this sub-optimal (cf. Proposition 1) location of two stores is less than the loss
of profits due to the opening of an extra store at an additional cost of K (product
proliferation strategy) and, of course, is also less than the loss of profits the incumbent
would face if he allowed entry to take place.

Proof of Proposition 8. We shall prove Proposition 8 in two steps. We shall first
prove that the “location choice” strategy is better than any product-proliferation-entry-
deterring-strategy (PPDES) and then we shall show that it is indeed better for the
incumbent to deter entry rather than allow entry to take place.

Let (s, x) by any PPDES, where s is the number of stores (hence, s =3) and x is the
corresponding vector of locations.. Let 7 (s, x) be the corresponding monopoly profits of
the incumbent. Then by Proposition 1

(s, x) = 7*(s) (23)

where, for any n, 7*(n) = R*(n)—nK and R*(n) is given by (3). Furthermore, by the
results of Section 3

7*(s) = 7*(3) (24)

(since n =3 is the maximum of 7*(n) for K in the range given by (22) and #*(n) is
strictly concave). Therefore it is sufficient to prove that

T*3)<m, (25)

where mr, is the monopoly profit of the incumbent corresponding to the location choice
stratégy, which is given as follows. For each K in the range (22) there is a unique
a* e (%, 1) such that max {R, R} = R = K (see Section 6 and Figure 2) and therefore two
stores located at x = a* and x§ = 1—a* are sufficient to deter entry.® It can be seen from
Figure 2 that a* is strictly increasing in K. Given this choice of locations, the incumbent
can set

pi=p,=r—c(1-2a*)’/4 (26)
and serve the whole mérket, with corresponding profits ' _
w’=r—c(1-2a*)?/4-2K. | (27)
Hence ,
o= (28)

Furthermore, using (3), we have .
7*(3)=r—c/36-3K. (29)
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Therefore, a sufficient condition for (25) to be satisfied is #°> 7*(3), which, using (27)
and (29), is equlvalent to

K > cf(a*) (30)
where
f(a*)=(2+9a**—9a%*)/9. (31)

Now, f is strictly decreasing in a* on [%,3] and f(}) =25 Hence (22) is a sufficient

condition for (25). We have therefore proved that location choice is better than product
proliferation. We now show that it is indeed in the interest of the incumbent to deter entry.
The highest profit the incumbent can make if he allows entry to occur is

m=c/2-K (32)

which corresponds to the case where he opens one store at one extreme of the market
(in which case the entrant would locate his store at the other extreme: cf. Corollary 3).
(32) is obtained from (7) by setting x, =0 and x,=1. Therefore, entry deterrence is
optimal if

m° <. (33)
Now using (28) and the fact that #° is strictly increasing in a* on [3, 1] and that
T axorys=r—9¢/100-2K, (34)
if .
r—9¢/100—2K >c¢/2—K (35)
then (33) is satisfied. Now, (35) is equivalent to
K <r-59¢/100 , (36)

and since we have assumed thar r=3c/4, the RHS of (36) is greater than or equal to
4c/25. Since K belonging to the range (22) implies K <4c/25 the proof is complete. ||

For smaller values of K, in pai‘tiéular; for K in the range ’
5¢/144 < K <14c¢/225 37

the product specification strategy described above will no longer have the effect of deterring
entry and the incumbent will have to resort to a product proliferation strategy.

‘8. CONCLUSION

The purpose of this paper was to point out the possibility—so far unexplored—of
entry-deterring strategies based on product specification and to show that in some cases
such an entry-deterring strategy is more profitable than product proliferation. Further-
more, unlike the previous papers in the literature, we explicitly allowed for price competi-
tion in the post-entry game. The model used was very specific and the analysis confined
to a small subset of the parameter values. However, in defence of the paper it could be
argued that, in the present state of the art, it is difficult to work with a much more general
model. Finally, it should be noted that we only looked at the case where there is a positive
set-up cost for each product, that is, where the cost function is linear in the number of
products. It may be possible that different cost functions would yield different results
(in particular, when there are decreasmg or increasing returns to scale in the total number
of products).
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NOTES

1. In Schmalensee’s model the product space is represented by a circle and each brand is produced under
conditions of decreasing costs. The author restricts himself to the very special case where there are N brands,
located at distances 1/ N apart and all charging the same price p. He then introduces the ad hoc assumption
that any new entrant would also charge that price. Hay’s model is flawed in a similar way. Prescott and Visscher
are concerned with “vertical” differentiation and provide a series of examples rather than a general result. The
paper by Eaton and Lipsey (1979) can also be mentioned in this context, even though the authors are concerned
with a somewhat different problem, namely that of a growing spatial market.

2. In fact, no player would want to locate two or more stores at the same point (since there is a positive
set-up cost for each store) and, on the other hand, if two players opened one store each at the same location
then, by Bertrand’s theorem, those stores would yield zero revenue and therefore negative profits.

3. The assumption of zero marginal cost is introduced only in order to simplify the analysis and our
results do not depend on it.

4. The results of Section 3 were also independently proved by Neven (1985).

5. It is trivial to show that there does indeed exist a product-proliferation-entry-deterring-strategy
(PPEDS). In fact, let 7i be the smallest integer for which 7*(n) is negative (recall that «*(n) is strictly concave
and tends to —o0 as n goes to +c0). Then a PPDES which enables the incumbent to make positive profits is
given by (A —1) stores located according to (4).

6. It can be seen from Figure 2 that for each K in the range (22) there exists a continuum of points a*
(a compact interval containing the point 1/5) such that two stores located at xf=a* and x§=1—a* are
sufficient to deter entry. However, using the same argument which led to (4)—which gives the optimal location
of n stores for a protected monopolist—(see Bonanno (1985a) pp. 11-13 and 32-36), it is possible to show
that, of all these values of a*, only the largest maximizes the monopoly profits of the incumbent (subject to
the constraint of entry deterrence).
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