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Summary

Given an extensive game G, three subsets of the normal-form
equivalence class of G are defined: the subset of simultaneous
games [denoted by Sim(G)] the subset of subgame-preserving
quasi-simultaneous games [denoted by SubSim(G)] and, finally,
the subset consisting of the game G itself. We show that by
applying the notion of rational profile of beliefs (which is formu-
lated independently of the notion of strategy and therefore of
Nash equilibrium) to the games in Sim(G) one obtains exactly the
Nash equilibria of G, by applying it to the games in SubSim(G)
one obtains exactly the subgame-perfect equilibria of G and,
finally, by applying it to G itself one obtains a (strict) refinement
of subgame-perfect equilibrium.
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1. Introduction

For the past twenty years or so one of the main research programs
within non-cooperative game theory has been to refine the Nash
equilibrium concept so as to better capture the notion of rationa-
lity in interactive situations. This research program has yielded a
plethora of solution concepts (for a partial survey see Van Damme,
1987). Although none of these solution concepts has been derived
from an axiomatic formulation of the notion of rationality, one
view, that would probably be shared by many game-theorists, is
that each refinement of Nash equilibrium incorporates a well-
defined notion of rationality and that, furthermore, what is
involved in moving from one solution concept to a refinement of it is a
strengthening of the underlying notion of rationality. Thus, for
example, according to this view, there is some notion of rationality
from which one can deduce the solution concept ‘“Nash equi-
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librium”. A strengthening of that notion of rationality yields the
solution concept ‘“subgame-perfect equilibrium” (Selten, 1965,
1975). A further strengthening of that notion of rationality yields
“sequential equilibrium” (Kreps & Wilson, 1982), and so on.

In this paper we offer an alternative point of view, by showing
that it is possible to interpret equilibrium refinements as stemming
from an increase in the amount of information conveyed to the
players (rather than from a strengthening of the notion of rationa-
lity). Furthermore, we provide an axiomatic definition of rationa-
lity, which is formulated independently of the notion of strategy
(and, therefore, of Nash equilibrium).

Our approach builds on the concepts of information and belief
introduced in Bonanno (1992a,b). Fix an extensive game and let Z
be the set of terminal nodes. For every player i and for every node ¢,
a subset K(t) of Z is defined and is interpreted as the information
received by player i when the play of the game reaches node ¢. Thus
if, say, K,(t)=1{z,, 25 2;} then, when node ¢ is reached, player 2
learns that the play of the game so far has been such that only
terminal nodes z,, 2, or 2, can be reached. A belief of player i 1s then
defined as a function that associates with every node ¢t an element
of the set K(t), denoted by f«(¢). The interpretation is that if, say,
K (t)={z,, 23, z;} and f,(t)=z,, then, at node ¢, player 2 knows (is
informed) that the play of the game can only end either at node z,
or at z, or at z, and believes that the outcome will actually be z;. A
profile of beliefs is a list of beliefs, one for each player. Four
consistency properties define the notion of rational profile of
beliefs. It is shown in Bonanno (1992b) that the notion of rational
profile of beliefs gives rise to a refinement of subgame-perfect
equilibrium.

The question of if, and how, the amount of information conveyed
to the players during the play of a game can have an effect on the
solutions of the game can be approached from two different
directions. One approach is to fix an extensive game and vary the
“extended information function” K (t) and show that by refining K
one obtains a refinement of Nash equilibrium (this is the line of
inquiry followed in Bonanno, 1992d). Another approach is to fix the
extended information function K,(f) and consider different classes
of extensive games within the same normal-form equivalence class
of a given game. This is the approach followed in this paper. Given
an extensive game G, we identify three subsets of the normal-form
equivalence class of G: the subset of simultaneous games (denoted
by Sim(G) and defined in Section 3), the subset of subgame-
preserving simultaneous games (denoted by SubSim(() and defined
in Section 4) and, finally, the subset consisting of the game G itself.
We show that (1) by applying the notion of rational profile of
beliefs to the games in Sim(G) one obtains exactly the Nash
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equilibria of G,t (2) by applying it to the games in SubSim(G) one
obtains exactly the subgame-perfect equilibria of G and, finally, (3)
by applying the notion of rational profile of beliefs to G itself one
obtains a (strict) refinement of the notion of subgame-perfect
equilibrium.

These results are in a sense trivial, since they clearly hold for the
standard sequential equilibrium concept and probably for some of
the many notions of perfect Bayesian equilibrium that have been
proposed. The reason why they are proved here in relation to the
notion of rational profile of beliefs is two-fold. First of all, since the
notion of rational profile of beliefs is based exclusively on the
extended information function K(t), and does not make any refer-
ence to the notion of strategy, it is not a priori obvious that, when
applied to different subsets of the normal-form equivalence class of
a given game, it should yield exactly the notions of Nash equi-
librium, subgame-perfect equilibrium, etc. Secondly, precisely
because rational profiles of beliefs are based on the extended
information function K(t), the difference in results can (indeed, it
must) be interpreted in terms of a dependence of the solution on the
amount of information conveyed to the players.}

In order to make the exposition as simple and as transparent as
possible, we shall limit ourselves to pure beliefs (see Section 2),
pure strategies and games without chance moves. A very general
analysis that allowed for mixed beliefs, mixed strategies and
chance moves would require more complex definitions and would
obscure the simple point of this paper, namely that refinements of
Nash equilibrium may reflect, not a strengthening of the notion of
rationality, but rather an increase in the amount of information
conveyed to the players.

2. Preliminary definitions

We begin by reviewing the notation and some of the definitions of
Bonanno (1992q,b). Fix a finite extensive game. Let X be the set of

t By “one obtains exactly” we mean that there is a one-to-one corres-
pondence.

1t The results of this paper also raise some doubts about a prominent view
among game theorists, namely that there are no important details in the extensive
form, other than those that are captured by the corresponding normal (or
strategic) form. This view was put forward in a very influential paper by Kohlberg
and Mertens (1986). (In a recent paper, Mailath, Samuelson and Swinkels (1993)
have pointed out a subtle structural relationship between a normal form game
and its many extensive-form representations.) Our results show that the extensive
form may be important in that it specifies the amount of information that the
players obtain during the play of the game. As this information becomes more
refined, so do the implications of rationality as captured by the notion of rational
profile of beliefs.



26 G. BONANNO

1 2 1
C D |l261

1
A E 1

0 0
0 0
1 1
1 0

FIGURE A. An extensive game used to illustrate the notion of
information.

decision nodes, Z the set of terminal nodes, and T=XUZ. For every
teT, let 6(t)< Z be the set of terminal nodes that can be reached
from ¢ (for example, in the game of Figure A, 0(x,)={2,, 2, 25, 25} )-
Clearly, for every zeZ, 6(z) ={z}.

We denote by x, the root of the tree and for every node ¢#x, we
shall denote the immediate predecessor of ¢ by p,. Finally, for every
node ¢ and for every player i, H(?) is the set of information sets that
satisfy the following property: heH(t) if and only if A is an
information set of player i and there is a node yeh that is a
successor of .

The information received by player i when the play of the game
reaches node ¢ is denoted by K(f). There are several “extended
information” functions K: Ix T—2% (where I is the finite set of
players and 27 denotes the set of subsets of Z) that can be defined
subject to some natural restrictions (e.g. that they be coherent
with the information structure of the extensive game). We shall use
the following function, which represents the maximum amount of
information that can be conveyed to the players:f

+ On this see Bonanno (1992a), in particular the discussion in the appendix. It
should be noted, however, that the function K(-,") represents the maximum
amount of information only if one considers the class of all the extensive games.
On the other hand, if one restricts attention to a subclass of extensive games, then

the function K(-,”) can be refined. A characterization of the notion of maximum
information for multistage games is given in Battigalli and Bonanno (1993).
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(1) [At the root of the tree all the players have the same

information]:

K (x,)=Z, for every player i.

(2) [When a terminal node is reached, all the players are

informed]:

K (2)={z}, for every zeZ and for every player i.

(3) [Coherence with the information structure]: if x is a

decision node that belongs to information set h of player i,
then K (x)= Uﬁ(y).
yEh

(4) [If x is a node such that, either there are no decision

nodes of player i after x, or the information sets of
player i that come after x consist of successors of x,
then player iis told that node x has been reached]: if x is
a decision node of a player different from player i and either
H(x)=@ (where @ denotes the empty set) or, for every
heH(x), Uh (y) < 0(x) then K(x)=0(x).

Yye.

(5) [Players remember the choices they made]: if x is a

decision node of a player different from player i and the
condition given under (4) is not satisfiedt and x is an
immediate successor of decision node ¢ of player i and { (¢,, x,),
(T4, x,),...,(t,, x,,)} 1s the choice of player i that leads from ¢ to
x, then

K (x)=0(x)ul(x)u ... ub(x,).

(6) [In every other case, players receive no new informa-

tion]: finally, if x is a decision node of a player different from
player i and it does not satisfy conditions (4) and (5), then
K (x)=K(p,) (recall that p, is the immediate predecessor of
node x).

For example, in the game of Figure A we have:

By (1): K(x)=Z={z,, 2z, 2,2, 2,25} for all i=1,2, 3, 4.

By (2): K(z)={z;} for all i=1,2,3,4 and for all j=1,...,86.

By (3): K, (x)=0(x,)={z,, 2,, 2, 2}

By (4): K (x)= K (x))=0(x)={z,, 2,, 5, 2}

By (6): K (x,)=K,(x,)=Z.

By (4): K (xg) = Ky(x5) = K, (x3) = 0(x;) = {z,, 2,, 2, -

t That is, there exists an heH (x) and a node yeh such that y is not a successor
of x.

t Thus t=t and x=x, for some j=1,..., m. Recall that a choice ¢ at informa-
tion set h={t,,...,t,} is a set of arcs c={(¢,, x,), {t,, x,), ..., (¢, x,)} where, for each

k=1,...,m, node x, is an immediate successor of node ¢,.
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By (3): Ky(xy)={2,, 25, 23, 2, Z5}-

By (3): K (x)=0(x)=1{z, 25}

By (4): K (x,)= K,(x,)= Kj(x,) = 0(x,)={z,, z;}.
By (4): K (%)= K,(x,) = K (x,) = 0(x,) = {2}, 25}
By (3): K, (x,) ={2,, 25, 23, 24, 25}

REMARK 1: by (3) it is clear that if h is an information set of player i,
and x and y are two nodes in h, then K(x)=K(y). Thus it makes
sense to write' K(h) for player i’s information at her information
set h.

In order to simplify the exposition, from now on we shall restrict
attention to extensive games with perfect recall that have no
chance moves.

DEFINITION 1: a (pure) belief of player i is a function
p:T—-Z

satisfying the following properties:
(1) PAeK(t) VteT,
(1) if x and y belong to information set h of player i, then

ﬁl(x) = ﬁi(y)~

Condition (i) says that what a player believes must be consistent
with what he knows, and condition (ii) says that a player cannot
have different beliefs at two nodes that belong to one of his
information sets (since his information is the same at both nodes).
Thus it makes sense to write f(h) for player i’s belief at her
information set A.

DEFINITION 2: a profile of beliefs is an n-tuple f=(f,,..., B,), where,
for each player i=1,...,n, B, is a belief of player i.

We shall make use of the following notation: given a decision node
x, X(x) denotes the set of immediate successors of x.

DEFINITION 3: we say that a profile of beliefs [ is rational if it
satisfies the following properties (a discussion of these properties
follows):

(1) [Contraction Consistency] If y is a successor of xt and
B(x)eK(y), then B(y)=p(x).

(2) [Tree Consistency] Let h be an information set of player i
and let xch be the predecessor of f(h). Then

+ It is shown in Bonanno (1992¢) that in a game with perfect recall the
following is true for every player i and for every two nodes x and y: if yis a
successor of x then K (y)< K(x).
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Ficure B. Illustration of the implications of the property of Tree
Consistency.

B()ed(y),  Vyel(x).

() [Individual Rationality] Let h be an information set of
player i and let xch be the predecessor of f(h). Then

UB(h)=UB(y)  VyeZ(x),

where U;: Z—> % is player i’s payoff function (# denotes the set
of real numbers).

(4) [Choice Consistency] Let node x belong to information set h
of player i, and let c be the choice at h that precedes f(h). Then,
for every player j, if B(x) comes after choice d at h, it must be
d=c.

Property (1) says that a player does not change her belief unless
she has to, that is unless her previous belief is inconsistent with
the new information.

Tree consistency does not allow a player to change her opinion
about her position in an information set after her own choice. In
other words, its purpose is to rule out situations like the one
illustrated in  Figure B. There we  have  that
Ky (h)={z,, z,, z,, 2,, 2;, 2,} where h={x,, x,} is the first information
set of player 2, and K,(g)={z,, 2,, z,, z;} where g={x,, x,} is the
second information set of player 2.

Suppose f,(h) =z and B,(g) = z,. This belief of player 2 is inconsis-
tent because believing in z; at 4 means believing that node x, was
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reached. Given this belief, if player 2 takes action A, so that the
play of the game proceeds to information set g, then node x, must
be reached, and from x, terminal node 2, cannot be reached. In this
example, property (2) requires that if f,(h) = 2z, then either f,(g)=z2,
or f,(8) = z;.

The motivation for property (3) is as follows. If terminal node z
represents what player i believes at her information set & [that is, if
z=f(h)], then it means that player i believes that she is at that
node x in A& which lies on the play to z. Suppose that
U(2)<U(p(y)) where y is an immediate successor of x. Then
believing in z (at k) is irrational for player i because, instead of
making the choice required to reach z, she can—according to her
beliefs and by making another choice—move the game to node y
where, again according to her beliefs, the game will evolve to an
outcome which she prefers to z.

Property (4) says that if player j believes that the play of the
game has reached player i’s information set A, then player j’s belief
concerning the choice that will be made by i at A must be the same
as the choice implied by i’s belief at i (although i and j might
disagree on the node at which this choice would be made). A
justification for this property could be that player j puts himself in
the shoes of player i and correctly predicts the choice that player i
would make at her information set h.

Given an arbitrary profile of beliefs § we can extract from it a
pure-strategy profile ¢ =&(p) as follows: if h is an information set of
player i and c is the choice at h that precedes f(h), set 5,(h) =c, that
is, ¢ is the choice selected (with probability 1) by player i’s strategy
at information set A.

The following result is proved in Bonanno (1992b).

PROPOSITION 1: fix an extensive game G.t Let § be a rational profile
of beliefs and let o = E(f) be the corresponding strategy profile. Then g
is a subgame-perfect equilibrium of G.

3. Definition of Sim(G)

Given an extensive game G, we denote by &(G) the normal-form
equivalence class of G, that is, the set of extensive games that have
the same normal form as G. In this section we discuss a subset of
this class, denoted by Sim(G).

Define an extensive game to be simultaneous if every play crosses
all the information sets. Given an extensive game G, we denote by
Sim(G) the games in &(G) that are simultaneous and satisfy the

+ Recall that throughout the paper we restrict attention to extensive games
with perfect recall that have no chance moves.
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Player 2 Player 2

D E D E
Player A |2,2,2,2 2,222 Player A | 0,0,0,0 0,0,0,0
1 C| LL1,1 4,400 1 C| LLL1 0,011

Player 3 chooses L Player 3 chooses R

—V"

Player 4 chooses T

Player 2 Player 2
D E D E
Player A }2,2,22 2,222 Player A | 0,0,0,0 0,0,0,0
1 Cl| LLL,1 44,00 1 C| LLI,1 0,01,0
Player 3 chooses L ) Player 3 chooses R

'

Player 4 chooses B

Ficure C. The normal or strategic form of the extensive game of
Figure A.

property that every player has exactly one information set (Sim(G)
1s non-empty and every element of it can be obtained from G by
applying the transformations described by Thompson, 1952). For
example, if G is the game of Figure A (whose normal form is shown
in Figure C), then Figure D shows one element of Sim(G) (the
others are obtained by changing the order in which players choose
along any given play).

For later use we shall list the (pure-strategy) equilibria of the
game of Figure A.

REMARK 2: the game of Figure A has the following pure-strategy
equilibria:
(1) Nash: (A,D,L,T), (A,D,L,B), (C,D,R,T) and (C,D,R, B).
(2) Subgame-perfect: (A,D,L,T), (C,D,R,T).
(3) Sequential: (C,D,R,T) with player 3 assigning probability 1
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21 23 210 211 212 213 214 215 218
2 2 0 0 2 2 0 0 1 1 1 1 4 0
2 2 0 0 2 2 0 0 1 1 1 1 4 4 0 0
2 2 0 0 2 2 0 0 1 1 1 1 0 0 1 1
2 2 0 0 2 2 0 0 1 1 1 1 0 0 1 0

Ficure D. A game in Sim(G) where G is the extensive game of
Figure A.

to node x, (we are only considering simple assessments here,
as defined in Section 5).

LEMMA 1: let G be an extensive game. Let G, be an arbitrary element
of Sim(G) and let § be a rational profile of beliefs of G,. Let a =(p) be
the corresponding pure-strategy profile. Then o is a Nash equi-
librium of G,,.

ProoF: it follows from proposition 1, since every subgame-perfect
equilibrium is also a Nash equilibrium. |

We now want to prove the converse of lemma 1, namely that given
a pure-strategy Nash equilibrium ¢ of G, we can extract from it a
rational profile of beliefs of G,.

First a piece of notation: given a pure-strategy profile o, for
every node x we shall denote by {(x|o) the terminal node reached
from x by following the choices dictated by ¢. Now, given a
simultaneous game and a pure-strategy profile o, let f=¢(a) be the
profile of beliefs obtained as follows. For every player i and for
every node x,
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(1) if x is a decision node of player i or a predecessor of a
decision node of player i, set B(x) ={(x,l0),
(2) if x is a successor of a decision node of player i, set

p(x)={(x|o).T

REMARK 3: it is easy to verify that if o is a pure-strategy profile then

¢(d(o))=0, that is, E=¢ L.

LEMMA 2: let G be an extensive game. Let G, be an arbitrary element
of Sim(G) and o a pure-strategy Nash equilibrium of G, Let B=¢(o)
be the corresponding profile of beliefs of G, Then B is rational.

Proor: first of all, note that, in a simultaneous game where every
player has exactly one information set, for every player i we have
that:

(1) if x is a decision node of player i or a predecessor of a

decision node of player i, K,(x)= Z,
(2) if x is a successor of a decision node of player i then
K (x)=0(x).

Thus if ¢ is a pure-strategy profile of G, and f=¢(s), then f is
indeed a profile of beliefs [that is, for every player i, it is true that
B()eK (t) for every node ¢t and that if x and y belong to the same
information set of player i then f(x)=p.(y)]. We need to show that
[ is rational.

By (2) of the definition of ¢(s), Tree Consistency is satisfied,
since, for every node y that is a successor of a decision node of
player i, B(y)={(ylo)el(y).

Let x belong to an information set of player i and let j be another
player. Then, by definition of ¢(s), fi(x) ={(x,l0) and either
B(x)={(x,|0) or Bi(x)={(x|o). Thus both §(x) and B(x) come after the
same choice at h. Hence Choice Consistency is satisfied.

Now, fix an arbitrary player i and two nodes x and y such that y is
a successor of x and f,(x)eK,(y). We want to show that Bi(y)=px)
(Contraction Consistency). If y is a decision node of player i or a
predecessor of a decision node of player i, then Bi(y)=B(x)={(x,0).
If x is a decision node of player i or a predecessor of a decision node
of player i while y is a successor of a decision node of player i, then
Bx)={(x,l0) and S(y)={(ylo) and K(y)=6(y). Since by hypothesis
B(x)eK(y), the play to {(x,/6) must go through node y. Thus
{(ylo)={(x;lo). Hence B(y)=pB(x). Finally, if x is a successor of a
decision node of player i, then K (x)=0(x), K(y)=0(y), B(x)={(x|o)

t For example, consider the game of Figure D and the pure-strategy profile
(A,E, L, T). Then g= #(0) is given as follows: By(x) =B fx) = Box) = By(x) = Bux) =
ﬁa(xo) =ﬁ3(xl) = ﬁa(xz) :ﬁa(xa) = ﬂa(xq) = ﬂs(xs) = ﬂ3(xe) :ﬂ1(x4) = ﬂz(x4) =25 ﬂ4(xj) =z, for
all j=1,..,14; Bx)=F(x)=z, Bix,)=P(x,)= 2y Pi(x)=p(x;)=2; and for
lﬂ? 1,)23 3 Blx)=2z, Bixg) =z, fix)= 25, Bixy) = 2,, folx,) = 2y, Bx1) =2y, Bix,) =2,

X14) = 245
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and ,(y) ={(yl|o). Since by hypothesis f(x)eK,(y), the path from x to
{(x|o) must go through node y. Thus {(ylg)={(x|g). Hence
B(y)=B(x).

It only remains to show that, for each player i, f, satisfies
Individual Rationality. Suppose that there is a player i who
violates Individual Rationality. Let A be the unique information
set of player i, xeh be the node that belongs to the play to {(x,lo)
[recall that, by definition of #(s), f(h)={(x,lo)] and y be an
immediate successor of x such that U(f(y))> U({(x,l0)). Since
B{y)={(ylo), we have that

Uil(y10))> Uil(xl0)). (1)

Let g,(h)=c and let d be the choice at h that precedes y. It follows
from (1) that d#c. Let o, (h)=d and ¢ =(o;, ¢_;). Then
{(xylc"y={(ylo). Thus, by (1), by switching from g, to ¢ ;player i can
increase her payoff, contradicting the assumption that ¢ is a (pure-
strategy) Nash equilibrium of G,,. |

We can now prove the main result of this section, namely that,
given an arbitrary extensive G, by applying the notion of rational
profile of beliefs to the games in Sim(G) one obtains exactly the
Nash equilibria of G.

PrOPOSITION 2: let G be an extensive game and G, be an arbitrary
element of Sim(G). Then there is a one-to-one correspondence between
the set of pure-strategy Nash equilibria of G and the set of rational
profiles of beliefs of G,,.

Proor: by lemmas 1 and 2 and remark 3, there is a one-to-one
correspondence between the set of pure-strategy Nash equilibria of
G, and the set of rational profiles of beliefs of G,. Since G and G,
have the same set of pure-strategy Nash equilibria, the proof is
complete. |

For example, there is a one-to-one correspondence between the
pure-strategy Nash equilibria of the game of Figure A (cf. Remark
2) and the rational profiles of beliefs of the game of Figure D.

4. Definition of SubSim(G)

Fix an extensive game G. In this section we consider another
subset of £(G) (the normal-form equivalence class of G) that we
will call the set of subgame-preserving quasi-simultaneous games
and denote it by SubSim(G). In order to obtain an element G’ of
SubSim(G) from G we transform every subgame of G into an
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e :
X1
D X
[ X3 \ x4 3
L R L R
21 sz Z3 24 <5
2 0 2 0 1 1 4
2 0 2 0 1 1 4
2 0 2 0 1 1 0
2 0 2 0 1 1 0 zs 2o
0 0
0 0
1 1
1 0

Ficure E. A game in SubSim(G) where G is the extensive game of
Figure A.

equivalent simultaneous version, but in such a way that G’ has
the same number of subgames as G. Before we proceed to the
formal definition, we give an example. Let G be the game of Figure
A. Then the game of Figure E is an element of SubSim(G).

In order to obtain an element of SubSim(G) from G apply the
following algorithm:

STEP 1: find a smallest subgame of G (that is, a subgame of G that
has no proper subgames), call it G,. Replace G, with an arbitrary
element of Sim(G,), call it G;.

STEP 2: temporarily replace G;. with a terminal node z%™. Denote
the resulting game by G/G,.

STEP 3: find a smallest subgame of G/G, call it G,. Replace G, with
an arbitrary element of Sim(G,), call it Gj.

STEP 4: temporarily replace Gj. with a terminal node z%™. Denote
the resulting game by G/G,G,.

STEP 5: repeat until a game G/G,G,...G,, is obtained that has no
proper subgames.
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Step 6: replace G/G,G,...G, with an arbitrary element of
Sim(G/G,G,...G,).

STEP 7: replace 2™ with G; for all j=m, m—1,...,2,1 (in this
order).

LEMMA 3: let G be an extensive game and G, be an arbitrary element
of SubSim(G). Let 8 be a rational profile of beliefs of G, and o =,(p).
Then o is a subgame-perfect equilibrium of G,

Proor: it follows from proposition 1. ]

Now we want to prove the converse, namely that given a subgame-
perfect equilibrium of G, we can extract from it a rational profile of
beliefs.

First of all, given an extensive game, define a node x to be a root-
node if it is the root of a subgame. For every node x, define p(x) as
follows: p(x)=x if x is a root-node, otherwise p(x) is the closest
predecessor of x that is a root-node. Now, given an element
G,cSubSim(G) and a pure-strategy profile o of G, let f=d¢(a) be
obtained as follows. For every player i and for every node x,

(1) if x is a decision node of player i, for every node ¢ on the path
from p(x) to x (including p(x) and x) set f,(t) = {(p(x)l0),

(2) for every other node x, set f(x)={(x|o) [that is, f,(x) ={(x|o)
if either no successor of x is a decision node of player i or if
between x and every successor of x that is a decision node of
player i there is a root-node].

[Note that if GeSim(G), then the closest predecessor of x
that is a root-node is x,. Hence, when applied to simultan-
eous games, the function ¢ defined here coincides with the
function ¢ defined in Section 3. This fact justifies the use of
the same symbol ¢ for the two functions.]t

REMARK 4: note that, as before, for every pure-strategy profile o,

E(p(o))=0, that is, E=¢ .

LEMMA 4: let G be an extensive game and G, an arbitrary element of
SubSim(G). Let o be a pure strategy subgame-perfect equilibrium of
G, and B=¢(c) be the corresponding profile of beliefs. Then f is
rational.

Proor: first of all, note that if G,EeSubSim(G) then it has the

+ For example, consider the game of Figure E and the pure-strategy profile
(C,D,R,B). Then f=¢(0) is given as follows: §,(x,) = B,(x,) = B,(x,) = B,(x;) = B (x,) =
B«i(xQ) = Bl(xs) = ﬂz(xs) = B4(x5) = 2 ﬁ:i(xj) =2 for j= 0,1,...,6; ﬂl(xl) = ﬂ4(x1) = ﬁl(xa) =
I?Z(xla)zszt(txa) =zy; Bi(x )=o) =B(x) = 2;; Bi(xe) = Polxe) = B(xe) = 24 Blx7) =2, for all
i=1,2,3,4.
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following structure: if G is a subgame of G, and G| is the game
obtained from Gj by replacing all the proper subgames of G; by
terminal nodes, then every player has at most one information set
in G [thus if a player has two information sets in a subgame G, of
G, then there is a proper subgame of G; to which one and only one
of the two information sets belongs]; furthermore, all the informa-
tion sets of Gg are crossed by all the paths from the root of Gj to
terminal nodes. It follows that, for every player i, the following is
true for G,

if x is a decision node of player i, then K(x)==60(p(x)); further-
more, for every node y that lies on the path from p(x) to x,
K;(y)=06(p(x)). For every other node ¢, K(t)=0(2).

[In other words, let ¢t be an arbitrary node. If there is no successor
of ¢ that is a decision node of player i, then K (f)=6(t). Otherwise,
let x be the closest successor of node ¢ that is a decision node of
player i; if ¢ lies on the path from p(x) to x, then K,(t)=0(p(x)),
otherwise K (2)=6(z).]

The proof of this lemma is similar to that of lemma 2. First of all,
it is clear that if o is a pure-strategy profile of G,eSubSim(G) and
B=¢(0), then f is indeed a profile of beliefs [that is, for every player
I, 1t is true that f(¢)eK(t) for every node ¢ and that if x and y belong
to the same information set of player i then B,(x) = BA(y)]. We need to
show that f is rational.

Tree Consistency follows from the fact that if y is an immediate
successor of a decision node of player i, then K,(y)=6(y) (this is a
consequence of the structure of G, described above: if a player has
two information sets in a subgame G, of G, then there is a proper
subgame of G; to which one and only one of the two information
sets belongs).

Choice Consistency follows from the fact that for every two
players i and j, and every node ¢, 8(t)={(x|o) for some node x and
B,(t)={(ylo) for some node y. Thus if ¢ belongs to information set h
of player { and B,(t) comes after A, then both B.(t) and f.(¢) come after
the same choice at A, namely the choice prescribed E])y a;.

We now prove Contraction Consistency. Fix an arbitrary player
i and two nodes x and y such that y is a successor of x and
Bx)eK(y). We want to show that B(y) = f,(x). First of all, note that,
by definition of ¢(a), f(x)={(t/o) for some node ¢ that is either x
itself or a predecessor of x. If K(y)=6(y), then, since by hypothesis
B{x)eK(y), it follows that the path from ¢ to {(t/o) goes through
node y. Thus ((tjo)={(ylo). But K(y)=60(y) implies that
B(y)={(ylo). If K(y)#06(y), then K(y)=0(p(y)). If x lies between
p(¥) and y, then f,(y)=p.(x)={(p(y)|o). If x is a predecessor of p(y),
then from the hypothesis that g(x)eK(y) it follows that the path
from t to {(t|o) goes through p(y). Hence ((t|o) ={(p(y)|o).
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It only remains to show that, for each player i, f; satisfies
Individual Rationality. Suppose that there is a player i who
violates Individual Rationality. Then there is an information set h
of player i such that, if xeh is the node that belongs to the path from
p(x) to {(p(x)|o) (recall that, by definition of ¢(a), f,(h)={(p(x)|0)
where p(x) is the closest predecessor of x that is a root-node) there
is an immediate successor y of x such that U(8(y))> U({(p(x)|o)).
It was shown above (cf. the proof of Tree Consistency) that
K(y)=6(y), implying that f(y)={(ylo). Thus it must be

Uil(ylo))> ULl(p(x)la)). (2)

Let g,(h)=c and let d be the choice at A that precedes y. It follows
from (2) that d#c. Let o} be the strategy obtained from g, by
replacing o (h)=c with o(h)=d and let o¢'=(g, o_;). Then
Up(x)la)={(y|o). Thus, by (2), by switching from o, to ¢ ;player i can
increase his payoff in the subgame with root p(x), contradicting the
assumption that ¢ is a subgame-perfect equilibrium of G,. |

We can now prove the main result of this section, namely that,
given an arbitrary extensive G, by applying the notion of rational
profile of beliefs to the games in SubSim(G) one obtains exactly the
subgame-perfect equilibria of G.

ProPoSITION 3: let G be an extensive game and G, be an arbitrary
element of SubSim(G). Then there is a one-to-one correspondence
between the set of pure-strategy subgame-perfect equilibria of G and
the set of rational profiles of beliefs of G,

ProOOF: by lemmas 3 and 4 and remark 4 there is a one-to-one
correspondence between the set of pure-strategy subgame-perfect
equilibria of G, and the set of rational profiles of beliefs of G;. Since
G and G, have the same pure-strategy subgame-perfect equilibria,
the proof is complete. [ |

REMARK 4: in order to fully appreciate the content of proposition 3,
it is worth noting the following, which was pointed out by Batti-
galli and Li Calzi (1993: p. 96). There exist extensive-form solution
concepts that satisfy the property of sequential rationality (which
is also satisfied by rational profiles of beliefs: see proposition 4
below) and yet do not yield (or refine) subgame-perfection. An
example can be found in the notion of “weak sequential equi-
librium”’ (see Hillas, 1987; see also Myerson, 1991: pp. 170-175).}

+ On the other hand, some extensive-form solution concepts do not satisfy
subgame perfection because they purposefully weaken the sequential rationality
condition: see, for example, Reny (1992).
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5. Perfect Bayesian equilibria

In order to extend the analysis beyond subgame-perfect equilibria
it is convenient to switch from strategy profiles to assessments, as
defined by Kreps and Wilson (1982). Recall that an assessment is a
pair (o, v), where ¢ is a strategy-profile and v : T—[0, 1] is a function
(called a “system of beliefs” by Kreps and Wilson) satisfying the
property that, for every information set A, £_, v(x)=1. We shall
restrict attention to simple assessments. An assessment (g, v) is
simple if o is a pure-strategy profile and v satisfies the following
property: for every node x, either v(x)=0 or v(x)=1.

Given a (not necessarily rational) profile of beliefs § we can
associate with it a simple assessment (g, v) by letting o=¢&(f) and
v=1(f)), where 7(f) is defined as follows: if 4 is an information set of
player i and xeh is the predecessor of §,(h), then v(x)=1, and v(y)=0
for all yeh/{x}.

DEFINITION 4: a simple assessment (o, v) of an extensive game G is a
perfect Bayesian equilibrium of G if there exists a profile of beliefs f§
of G such that B is rational and (o, v)=(&(B), ©(f)).

PropPOSITION 4: let G be an extensive game and let the simple
assessment (g, v) be a perfect Bayesian equilibrium of G. Then o is a
subgame-perfect equilibrium of G. Furthermore, (0, v) is sequentially
rational.

Proor: that o is a subgame-perfect equilibrium of G follows
directly from proposition 1, since g =&(f). It only remains to prove
that (o, v) is sequentially rational. In order to do this we need the
following lemma, which is proved in Bonanno (1992b; appendix B).

LEMMA 5: let G be an extensive game with perfect recall. Let f§ be a
profile of beliefs of G that satisfies the properties of Contraction
Consistency and Choice Consistency. Then for every player i and for
every node x, if f(x)et(x) then B(x)={(x|c) where o= _¢(p).

Now we can prove that if § is a rational profile of beliefs of G and
(o,0)=(&(B), ©(P)) is the corresponding simple assessment, then
(o,v) 1s sequentially rational.

A simple assessment (o, v) is sequentially rational if it satisfies
the following property. Fix an arbitrary information set 4 and let i
be the corresponding player. Let eh be the node such that v(z)=1.
Then

Ul(xlo)) = Ul(ylo)) for all yeX(%) (3)

(recall that X(%) denotes the set of immediate successors of %), that
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is, by switching to a different choice at information set A—given
the belief that node % was reached with probability 1 and that
future play will be according to g—player i cannot increase her
payoff.

By definition of t(f), & is the node in A that precedes f,(h). Hence
B.(h)eB(x) and, by lemma 5,

B(h)={(xl0). 4

By Tree Consistency, for every yeX(k), f{y)ef(y). Hence by
lemma 5,

By)={(ylo) for every yeZ(x). (5)

By Individual Rationality,

U(B(m) = U(B(y)) for every yeZ(x). (6)
Putting together (4)-(6), we obtain (3). [ |

Proposition 4 implies that the notion of perfect Bayesian equi-
librium is stronger than that of subgame-perfect equilibrium, since
the former satisfies sequential rationality, while the latter does
not. For example, if G is the game of Figure A, then the only perfect
Bayesian equilibrium is given by (C,D,R, T) with player 3 assigning
probability 1 to node x, [this is also the only (simple) sequential
equilibrium: see remark 2]. This can be shown by a minor adap-
tation of the argument given in Bonanno (1992b; section 4).

The following example, on the other hand, shows that not every
perfect Bayesian equilibrium is a sequential equilibrium.{ Con-
sider the game of Figure F.

Let 8 be the following profile of beliefs:

By(xg) =2y, Pr(x) =2, fi(xy) =2, By(x) = 2,, Br(xy) = 2y,
ﬂ1(x5) =2z ﬁ1(x6) =2y

Bo(xe) = 21y, Bolx)) = Bo(%5) = 210, Bo(%3) = 25, o) = 2,
ﬂz(xs) =2, ﬁz(xs) =29,

Ba(xg) = 211, Pa(x1) = 2y, P(x5) = By(x,) = 25, B3(X5) = 21,
,33(x5) =2, ﬁs(xs) =2g,

Bu(x) = 211, Bu(x) =21, Bix5) =2y, By(x,) =24 By(2x5) = 21,
ﬂ4(x5) = 134(x6) = 29~

+ For a more complete analysis of the relationship between the notion of
sequential equilibrium and that of rational profile of beliefs, see Bonanno (1992c).
In particular, it is shown there that the former is a refinement of the latter.
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Ficure F. An extensive game that shows that not every perfect
Bayesian equilibrium is a sequential equilibrium,

It is easy to check that f is a rational profile of beliefs. Now, if
(g, 0)=CE(P, 1(f), then ¢=(C,D,G,M) and wv(x,)=1, v(x,)=1,
v(xs)=1 (o is denoted by double arcs in Figure F and v by enclosing
in a dotted circle the nodes that are assigned probability 1). This
assessment 1s not a sequential equilibrium, because it does not
satisfy the property of consistency as defined by Kreps and Wilson
(1982). In fact, v(x;)=1 requires that along the sequence that

converges to g, E be assigned a probability of lower order than F,
for example, P{E}=% and P{F}=#, while v(x;)=1 requires the
opposite. Intuitively, the property of consistency requires that
there be agreement among all the players concerning the relative
likelihood of any two deviations from the equilibrium strategies.
Thus, if the equilibrium strategies are (C,D,G, M), then players 3
and 4 (whose information sets ought not to be reached) should
agree—if asked to move—on whether deviation E is more or less
likely than deviation F. Since player 3 assigns probability 1 to node
x4, he believes that E is infinitely more likely than F. On the other
hand, player 4, by assigning probability 1 to node x;, believes the
opposite. Such disagreement is not allowed by the notion of
consistency as defined by Kreps and Wilson. Finally, it is worth
noting that in the game of Figure F there is no sequential
equilibrium where player 1 chooses C with probability 1.
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6. Conclusion

Given an extensive game, we associated with every node ¢ and
every player i a subset K (¢) of the set of terminal nodes, interpreted
as player i’s information when the play of the game reaches node t.
A belief of player i was then defined as a map from the set of all
nodes into the set of terminal nodes satisfying two main properties:
what a player believes must be consistent with what she knows,
and a player’s beliefs must be the same at any two nodes that
belong to one of her information sets (since her information is the
same at those two nodes). Four natural properties (Contraction
Consistency, Tree Consistency, Individual Rationality and Choice
Consistency) were used to define the notion of rational profile of
beliefs. Given an extensive game G we identified three subsets of
the normal-form equivalence class of G: Sim(G), SubSim(G) and
{G}. It was shown that: (1) the Nash equilibria of G are in one-to-
one correspondence with the rational profiles of beliefs of an
arbitrary element of Sim(G), (2) the subgame-perfect equilibria of G
are in one-to-one correspondence with the rational profiles of
beliefs of an arbitrary element of SubSim(G), and (3) the rational
profiles of beliefs of G give rise to a (strict) refinement of the notion
subgame-perfect equilibrium.
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