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Abstract
We discuss the issues that arise in modeling the notion of common belief of
rationality in epistemic models of dynamic games, in particular at the level
of interpretation of strategies. A strategy in a dynamic game is defined as
a function that associates with every information set a choice at that infor-
mation set. Implicit in this definition is a set of counterfactual statements
concerning what a player would do at information sets that are not reached,
or a belief revision policy concerning behavior at information sets that are
ruled out by the initial beliefs. We discuss the role of both objective and
subjective counterfactuals in attempting to flesh out the interpretation of
strategies in epistemic models of dynamic games.

1 Introduction

Game theory provides a formal language for the representation of interactive
situations, that is, situations where several “entities” - called players - take ac-
tions that affect each other. The nature of the players varies depending on the
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2 Rational play

context in which the game theoretic language is invoked: in evolutionary biol-
ogy (see, for example, Smith (1982)) players are non-thinking living organisms;1

in computer science (see, for example, Shoham and Leyton-Brown (2008)) play-
ers are artificial agents; in behavioral game theory (see, for example, Camerer
(2003)) players are “ordinary” human beings, etc. Traditionally, however, game
theory has focused on interaction among intelligent, sophisticated and rational
individuals. For example, Aumann describes game theory as follows:

“Briefly put, game and economic theory are concerned with the
interactive behavior of Homo rationalis - rational man. Homo ratio-
nalis is the species that always acts both purposefully and logically,
has well-defined goals, is motivated solely by the desire to approach
these goals as closely as possible, and has the calculating ability re-
quired to do so.” (Aumann (1985), p. 35)

This chapter is concerned with the traditional interpretation of game theory,
in particular, with what is known as the epistemic foundation program, whose aim
is to characterize, for any game, the behavior of rational and intelligent players
who know the structure of the game and the preferences of their opponents
and who recognize each other’s rationality and reasoning abilities. The funda-
mental problem in this literature is to answer the following two questions: (1)
under what circumstances can a player be said to be rational? and (2) what does
‘mutual recognition’ of rationality mean? While there seems to be agreement
in the literature that ‘mutual recognition’ of rationality is to be interpreted as
‘common belief’ of rationality, the issue of what it means to say that a player is
rational is not settled. Everybody agrees that the notion of rationality involves
two ingredients: choice and beliefs. However, the precise nature of their rela-
tionship involves subtle issues which will be discussed below, with a focus on
dynamic games. We shall restrict attention to situations of complete informa-
tion, which are defined as situations where the game being played is common
knowledge among the players.2

There is a bewildering collection of claims in the literature concerning the
implications of rationality in dynamic games with perfect information: Au-
mann (1995) proves that common knowledge of rationality implies the backward

1Evolutionary game theory has been applied not only to the analysis of animal and insect
behavior but also to studying the “most successful strategies” for tumor and cancer cells (see, for
example, Gerstung et al. (2011)).

2On the other hand, in a situation of incomplete information at least one player lacks knowledge
of some of the aspects of the game, such as the preferences of her opponents, or the actions available
to them, or the possible outcomes, etc.
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induction solution, Ben-Porath (1997) and Stalnaker (1998) prove that common
belief / certainty of rationality is not sufficient for backward induction, Samet
(1996) proves that what is needed for backward induction is common hypoth-
esis of rationality, Feinberg (2005) shows that common confidence of rationality
logically contradicts the knowledge implied by the structure of the game, etc.
The purpose of this chapter is not to review this literature3 but to highlight
some of the conceptual issues that have emerged.

In Section 2 we start with a brief exposition of one of the essential compo-
nents of a definition of rationality, namely the concept of belief, and we review
the notions of a model of a game and of rationality in the context of simul-
taneous games. We also discuss the role of counterfactuals in the analysis of
simultaneous games. In the context of dynamic games there is a new issue that
needs to be addressed, namely what it means to choose a strategy and what the
proper interpretation of strategies is. This is addressed in Section 3 where we
also discuss the subtle issues that arise when attempting to define rationality
in dynamic games.4 In Section 4 we turn to the topic of belief revision in dy-
namic games and explore the use of subjective counterfactuals in the analysis
of dynamic games with perfect information. Section 5 concludes.

The formalism is introduced gradually throughout the chapter and only to
the extent that is necessary to give precise content to the concepts discussed.
For the reader’s convenience a table in the Appendix summarizes the notations
used and the corresponding interpretations.

The analysis is carried out entirely from a semantic perspective.5

2 Belief, common belief and models of games

For simplicity, we shall restrict attention to a qualitative notion of belief, thus
avoiding the additional layer of complexity associated with probabilistic or
graded beliefs.

Definition 2.1. An interactive belief structure (or multi-agent Kripke structure) is a
tuple 〈N,Ω, {Bi}i∈N〉where N is a finite set of players, Ω is a set of states and, for
every player i ∈ N,Bi is a binary relation on Ω representing doxastic accessibility:
the interpretation of ωBiω′ is that at state ω player i considers state ω′ possible.

3Surveys of the literature on the epistemic foundations of game theory can be found in Battigalli
and Bonanno (1999), Brandenburger (2007), Dekel and Gul (1997), Perea (2007; 2012).

4The notion of rationality in dynamic games is also discussed in Perea (2014).
5For a syntactic analysis see Bonanno (2008; forthcomingb), Clausing (2003; 2004), de Bruin

(2010), van Benthem (2011). See also Pacuit (2014).
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We denote byBi(ω) the set of states that are compatible with player i’s beliefs
at state ω,6 that is,

Bi(ω) = {ω′ ∈ Ω : ωBiω
′
}. (1)

We assume that each Bi is serial (Bi(ω) , ∅, ∀ω ∈ Ω), transitive (if ω′ ∈ Bi(ω)
then Bi(ω′) ⊆ Bi(ω)) and euclidean (if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω′)). Seriality
captures the notion of consistency of beliefs, while the last two properties
correspond to the notions of positive and negative introspection of beliefs.7

Subsets of Ω are called events. We shall use E and F as variables for events.
Associated with the binary relation Bi is a belief operator on events Bi : 2Ω

→ 2Ω

defined by
BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. (2)

Thus BiE is the event that player i believes E.8

Figure 1 shows an interactive belief structure with two players, where
each relation Bi is represented by arrows: ω′ ∈ Bi(ω) if and only if there
is an arrow, for player i, from ω to ω′. Thus, in Figure 1, we have that
B1 = {(α, α), (β, γ), (γ, γ)} and B2 = {(α, α), (β, α), (γ, γ)}, so that, for example,
B1(β) = {γ} while B2(β) = {α}. In terms of belief operators, in this structure we
have that, for instance, B1{γ} = {β, γ}, that is, at both states β and γ Player 1
believes event {γ}, while B2{γ} = {γ}, so that Player 2 believes event {γ} only at
state γ.

Let B∗ be the transitive closure of
⋃

i∈N Bi
9 and define the corresponding

operator B∗ : 2Ω
→ 2Ω by

B∗E = {ω ∈ Ω : B∗(ω) ⊆ E}. (3)

B∗ is called the common belief operator and when ω ∈ B∗E then at state ω every
player believes E and every player believes that every player believes E, and so
on, ad infinitum.

6Thus Bi can also be viewed as a function from Ω into 2Ω (the power set of Ω). Such functions
are called possibility correspondences (or information functions) in the game-theoretic literature.

7For more details see the survey in Battigalli and Bonanno (1999).
8In modal logic belief operators are defined as syntactic operators on formulas. Given a (multi-

agent) Kripke structure, a model based on it is obtained by associating with every state an as-
signment of truth value to every atomic formula (equivalently, by associating with every atomic
formula the set of states where the formula is true). Given an arbitrary formula φ, one then stipu-
lates that, at a state ω, the formula Biφ (interpreted as ‘agent i believes that φ’) is true if and only if
φ is true at every state ω′ ∈ Bi(ω) (that is, Bi(ω) is a subset of the truth set of φ). If event E is the
truth set of formula φ then the event BiE is the truth set of the formula Biφ.

9That is,ω′ ∈ B∗(ω) if and only if there is a sequence 〈ω1, ..., ωm〉 in Ω and a sequence
〈

j1, ..., jm−1
〉

in N such that (1) ω1 = ω, (2) ωm = ω′ and (3) for all k = 1, ...,m − 1, ωk+1 ∈ B jk (ωk).
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Figure 1: An interactive belief structure

Figure 1 shows the relationB∗ (the transitive closure ofB1∪B2): in this case
we have that, for example, B∗{γ} = {γ} and thus B1B∗{γ} = {β, γ}, that is, event
{γ} is commonly believed only at state γ, but at state β Player 1 erroneously
believes that it is common belief that {γ} is the case.10

When the relations Bi (i ∈ N) are also assumed to be reflexive (ω ∈ Bi(ω),
∀ω ∈ Ω), then they become equivalence relations and thus each Bi gives rise
to a partition of Ω. In partitional models, beliefs are necessarily correct and
one can speak of knowledge rather than belief. As Stalnaker (1996) points out,
it is methodologically preferable to carry out the analysis in terms of (possibly
erroneous) beliefs and then - if desired - add further conditions that are sufficient
to turn beliefs into knowledge. The reason why one should not start with the
assumption of necessarily correct beliefs (that is, reflexivity of the Bi’s) is that
this assumption has strong intersubjective implications:

“The assumption that Alice believes (with probability one) that Bert
10As can be seen from Figure 1, the common belief relationB∗ is not necessarily euclidean, despite

the fact that the Bi’s are euclidean. In other words, in general, the notion of common belief does
not satisfy negative introspection (although it does satisfy positive introspection). It is shown in
Bonanno and Nehring (2000) that negative introspection of common belief holds if and only if no
agent has erroneous beliefs about what is commonly believed.
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believes (with probability one) that the cat ate the canary tells us
nothing about what Alice believes about the cat and the canary
themselves. But if we assume instead that Alice knows that Bert
knows that the cat ate the canary, it follows, not only that the cat in
fact ate the canary, but that Alice knows it, and therefore believes it
as well.” (Stalnaker (1996), p. 153.)

One can express locally (that is, at a state ω) the properties of knowledge by
means of the double hypothesis that, at that state, at least one player has correct
beliefs (for some i ∈ N, ω ∈ Bi(ω)) and that there is common belief that nobody
has erroneous beliefs (for allω′ ∈ B∗(ω) and for all i ∈ N,ω′ ∈ Bi(ω′)).11 Adding
such hypotheses introduces strong forms of agreements among the players (see
Bonanno and Nehring (1998)) and is, in general, not realistic.

Interactive belief structures can be used to model particular contexts in
which a game is played. Let us take, as a starting point, strategic-form games
(also called normal-form games), where players make their choices simultane-
ously (an example is a sealed-bid auction).12

Definition 2.2. A strategic-form game with ordinal payoffs is a tuple
〈N, {Si,%i}i∈N〉 where N is a set of players and, for every i ∈ N, Si is a set of
choices or strategies available to player i and %i is i’s preference relation over
the set of strategy profiles S = ×

i∈N
Si.13

11This is a local version of knowledge (defined as true belief) which is compatible with the
existence of other states where some or all players have erroneous beliefs (see Bonanno and
Nehring (1998), in particular Definition 2 on page 9 and the example of Figure 2 on page 6).
Note that philosophical objections have been raised to defining knowledge as true belief; for a
discussion of this issue see, for example, Stalnaker (2006).

12Strategic-form games can also be used to represent situations where players move sequentially,
rather than simultaneously. This is because, as discussed later, strategies in such games are defined
as complete, contingent plans of action. However, the choice of a strategy in a dynamic game is
thought of as being made before the game begins and thus the strategic-form representation of a
dynamic game can be viewed as a simultaneous game where all the players choose their strategies
simultaneously before the game is played.

13A preference relation over a set S is a binary relation % on S which is complete or connected
(for all s, s′ ∈ S, either s % s′ or s′ % s, or both) and transitive (for all s, s′, s′′ ∈ S, if s % s′ and s′ % s′′
then s % s′′). We write s � s′ as a short-hand for s % s′ and s′ � s and we write s ∼ s′ as a short-hand
for s % s′ and s′ % s. The interpretation of s %i s′ is that player i considers s to be at least as good as
s′, while s �i s′ means that player i prefers s to s′ and s ∼i s′ means that she is indifferent between s
and s′. The interpretation is that there is a set Z of possible outcomes over which every player has
a preference relation. An outcome function o : S → Z associates an outcome with every strategy
profile, so that the preference relation over Z induces a preference relation over S.
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We shall throughout focus on ordinal preferences (rather than cardinal pref-
erences with associated expected utility comparisons)14 for two reasons: (1)
since the game is usually hypothesized to be common knowledge among the
players, it seems far more realistic to assume that each player knows the ordinal
rankings of her opponents rather than their full attitude to risk (represented
by a cardinal utility function) and (2) our aim is to point out some general
conceptual issues, which are independent of the notion of expected utility.

The definition of a strategic-form game specifies the choices available to the
players and what motivates those choices (their preferences over the possible
outcomes); however, it leaves out an important factor in the determination of
players’ choices, namely what they believe about the other players. Adding a
specification of the players’ beliefs determines the context in which a particular
game is played and this can be done with the help of an interactive belief
structure.

Definition 2.3. Fix a strategic-form game G = 〈N, {Si,%i}i∈N〉. A model of G
is a tuple 〈N,Ω, {Bi}i∈N , {σi}i∈N〉 , where 〈N,Ω, {Bi}i∈N〉 is an interactive belief
structure (see Definition 2.1) and, for every i ∈ N, σi : Ω→ Si is a function that
assigns to each state ω a strategy σi(ω) ∈ Si of player i.

Let σ(ω) = (σi(ω))i∈N denote the strategy profile associated with stateω. The
function σ : Ω → S gives content to the players’ beliefs. If ω ∈ Ω, x ∈ Si and
σi(ω) = x then the interpretation is that at state ω player i “chooses” strategy
x. The exact meaning of ‘choosing’ is not elaborated further in the literature:
does it mean that player i has actually played x, or that she is committed to
playing x, or that x is the output of her deliberation process? Whatever the answer,
the assumption commonly made in the literature is that player i has correct
beliefs about her chosen strategy, that is, she chooses strategy x if and only if
she believes that her chosen strategy is x. This can be expressed formally as
follows. For every x ∈ Si, let [σi = x] be the event that player i chooses strategy
x, that is, [σi = x] = {ω ∈ Ω : σi(ω) = x}. Then the assumption is that

[σi = x] = Bi [σi = x] . (4)

We will return to this assumption later on, in our discussion of dynamic
games. Figure 2 shows a strategic-form game in the form of a table, where the
preference relation%i of player i is represented numerically by an ordinal utility
function ui : S → R, that is, a function satisfying the property that ui(s) ≥ ui(s′)

14Cardinal utility functions are also called Bernoulli utility functions or von Neumann-
Morgenstern utility functions.
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l r

t 2 , 1 0 , 0

b 1 , 2 1 , 2

Player  2

Player
1

Figure 2: A strategic form game

if and only if s %i s′. In each cell of the table the first number is the utility
of Player 1 and the second number the utility of Player 2. A model of this
game can be obtained by adding to the interactive belief frame of Figure 1 the
following strategy assignments:

σ1(α) = b, σ1(β) = σ1(γ) = t
σ2(α) = σ2(β) = r, σ2(γ) = l. (5)

How can rationality be captured in a model? Consider the following - rather
weak - definition of rationality: player i is rational at state ω̂ if - given that she
chooses the strategy ŝi ∈ Si at state ω̂ (that is, given that σi(ω̂) = ŝi) - there is no
other strategy si ∈ Si which player i believes, at state ω̂, to be better (that is, to
yield a higher payoff) than ŝi. This can be stated formally as follows. First of all,
for every state ω, denote by σ−i(ω) the strategy profile of the players other than
i, that is, σ−i(ω) = (σ1(ω), ..., σi−1(ω), σi+1(ω), ..., σn(ω)) (where n is the number of
players). Then (recall that - since σi(ω̂) = ŝi - by (4) σi(ω) = ŝi, for all ω ∈ Bi(ω̂)):

Player i is rational at ω̂ if, ∀si ∈ Si, it is not the case
that, ∀ω ∈ Bi(ω̂), ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω))
(where ŝi = σi(ω̂)).

(6)

Equivalently, let [ui(si) > ui(ŝi)] = {ω ∈ Ω : ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω))} . Then

Player i is rational at ω̂ if, ∀si ∈ Si, ω̂ < Bi [ui(si) > ui(ŝi)]
(where ŝi = σi(ω̂)). (7)
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For example, in the model of the strategic-form game of Figure 2 obtained
by adding to the interactive belief structure of Figure 1 the strategy assignments
given above in (5), we have that both players are rational at every state and
thus there is common belief of rationality at every state. In particular, there is
common belief of rationality at state β, even though the strategy profile actually
chosen there is (t, r) (with payoffs (0, 0)) and each player would do strictly better
with a different choice of strategy. Note also that, in this model, at every state
it is common belief between the players that each player has correct beliefs,15

although at state β neither player does in fact have correct beliefs.
It is well known that, in any model of any finite strategic-form game, a

strategy profile s = (si)i∈N is compatible with common belief of rationality if
and only if, for every player i, the strategy si survives the iterated deletion of
strictly dominated strategies.16

What is the conceptual content of the definition given in (7)? It is widely
claimed that the notion of rationality involves the use of counterfactual reason-
ing. For example, Aumann writes:

“[O]ne really cannot discuss rationality, or indeed decision making,
without substantive conditionals and counterfactuals. Making a de-
cision means choosing among alternatives. Thus one must consider
hypothetical situations - what would happen if one did something
different from what one actually does. [. . . ] In interactive decision
making - games - you must consider what other people would do if
you did something different from what you actually do.” (Aumann
(1995), p. 15)

Yet the structures used so far do not incorporate the tools needed for counter-
factual reasoning. The definition of rationality given in (7) involves comparing
the payoff of a strategy different from the one actually chosen with the payoff
of the chosen strategy. Can this counterfactual be made explicit?

First we review the standard semantics for counterfactuals.17

15That is, ∀ω ∈ Ω, ∀ω′ ∈ B∗(ω), ω′ ∈ B1(ω′) and ω′ ∈ B2(ω′).
16Thus, if at a state ω there is common belief of rationality then, for every player i, σi(ω) survives

the iterated deletion of strictly dominated strategies. For more details on this result, which orig-
inates in Bernheim (1984) and Pearce (1984), and relevant references, see Battigalli and Bonanno
(1999), Bonanno (forthcomingb), Dekel and Gul (1997), Perea (2012).

17For an extensive discussion see Halpern (1999b). In the game-theoretic literature (see, for
example Board (2006) and Zambrano (2004)) a simpler approach is often used (originally introduced
by Stalnaker (1968)) where f (ω,E) is always a singleton.
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Definition 2.4. Given a set of states Ω and a set E ⊆ 2Ω
\∅ of events, interpreted

as admissible hypotheses, a counterfactual selection function is a function f :
Ω × E → 2Ω that satisfies the following properties: ∀ω ∈ Ω, ∀E,F ∈ E,

1. f (ω,E) , ∅.
2. f (ω,E) ⊆ E.
3. If ω ∈ E then f (ω,E) = {ω}.
4. If E ⊆ F and f (ω,F) ∩ E , ∅ then f (ω,E) = f (ω,F) ∩ E.

(8)

The event f (ω,E) is interpreted as “the set of states closest to ω where E is
true”. Condition 1 says that there indeed exist states closest to ω where E is
true (recall that if E ∈ E then E , ∅). Condition 2 is a consistency condition
that says that the states closest to ω where E is true are indeed states where E
is true. Condition 3 says that if E is true at ω then there is only one state closest
to ω where E is true, namely ω itself. Condition 4 says that if E implies F and
some closest F-states to ω are in E, then the closest E-states to ω are precisely
those states in E that are also the closest F-states to ω.18

Given a hypothesis E ∈ E and an event F ⊆ Ω, a counterfactual statement
of the form “if E were the case then F would be the case”, which we denote by
E⇒ F, is considered to be true at state ω if and only if f (ω,E) ⊆ F, that is, if F is
true in the closest states to ωwhere E is true. Thus, one can define the operator
⇒ : E × 2Ω

→ 2Ω as follows:

E⇒ F = {ω ∈ Ω : f (ω,E) ⊆ F}. (9)

Adding a counterfactual selection function to an interactive belief structure
allows one to consider complex statements of the form “if E were the case then
player i would believe F” (corresponding to the event E ⇒ BiF), or “player i
believes that if E were the case then F would be the case” (corresponding to
Bi(E ⇒ F)), or “Player 1 believes that if E were the case then Player 2 would
believe F” (corresponding to B1(E⇒ B2F)), etc.

Now, returning to models of strategic-form games and the definition of
rationality given in (7), the addition of a counterfactual selection function to a
model allows one to compare player i’s payoff at a state ω̂, where she has chosen
strategy ŝi, with her payoff at the states closest to ω̂where she chooses a strategy

18When E coincides with 2Ω
\∅, Condition 4 implies that, for everyω ∈ Ω, there exists a complete

and transitive “closeness toω” binary relation �ω on Ω such that f (ω,E) = {ω′ ∈ E : ω′ �ω x,∀x ∈ E}
(see Theorem 2.2 in Suzumura (1983)) thus justifying the interpretation suggested above: ω1 �ω ω2
is interpreted as ‘state ω1 is closer to ω than state ω2 is’ and f (ω,E) is the set of states in E that are
closest to ω.
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si , ŝi. Implicit in (7) is the assumption that in those counterfactual states
player i’s beliefs about her opponents’ choices are the same as in ω̂. This is an
assumption: it may be a sensible one to make (indeed Stalnaker Stalnaker (1998;
1999) argues that it would be conceptually wrong not to make this assumption)
but nonetheless it may be worthwhile bringing it to light in a more complete
analysis where counterfactuals are explicitly modeled. Within the context of
strategic-form games, this is done in Board (2006) and Zambrano (2004), where
counterfactuals are invoked explicitly in the definition of rationality.19

3 Models of dynamic games

In dynamic games (also called extensive-form games) players make choices
sequentially, having some information about the moves previously made by
their opponents. If information is partial, the game is said to have imperfect
information, while the case of full information is referred to as perfect information.
We shall focus on perfect-information games, which are defined as follows. If
A is a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗

and 1 ≤ j ≤ k, the sequence
〈
a1, ..., a j

〉
is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗

and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

Definition 3.1. A finite dynamic game with perfect information and ordinal payoffs
is a tuple 〈A,H,N, ι, {%i}i∈N〉whose elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is,
if h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 ,
denoted by ∅, is an element of H and is a prefix of every history. A history
h ∈ H such that, for every a ∈ A, ha < H, is called a terminal history. The
set of terminal histories is denoted by Z. D = H\Z denotes the set of non-
terminal or decision histories. For every decision history h ∈ D, we denote
by A(h) the set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}.

• A finite set N of players.

19As remarked in Footnote 17, both authors use the less general definition of selection function
where f : Ω × E → Ω, that is, for every state ω and event E, there is a unique state closest to ω
where E is true.
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Figure 3: A perfect information game

• A function ι : D→ N that assigns a player to each decision history. Thus
ι(h) is the player who moves at history h. For every i ∈ N, let Di = ι−1(i)
be the set of histories assigned to player i.

• For every player i ∈ N, %i is an ordinal ranking of the set Z of terminal
histories.

The ordinal ranking of player i is normally represented by means of an
ordinal utility (or payoff ) function Ui : Z → R satisfying the property that
Ui(z) ≥ Ui(z′) if and only if z %i z′.

Histories will be denoted more succinctly by listing the corresponding ac-
tions, without angled brackets and without commas; thus instead of writing
〈∅, a1, a2, a3, a4〉we simply write a1a2a3a4.

An example of a perfect-information game is shown in Figure 3 in the form
of a tree. Each node in the tree represents a history of prior moves and is
labeled with the player whose turn it is to move. For example, at history a2c2
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Figure 4: The strategic form corresponding to the game of Figure 3

it is Player 1’s turn to move (after his initial choice of a2 followed by Player 2’s
choice of c2) and he has to choose between two actions: d1 and d2. The terminal
histories (the leaves of the tree, denoted by z j, j = 1, ..., 5) represent the possible
outcomes and each player i is assumed to have a preference relation %i over the
set of terminal histories (in Figure 3 the players’ preferences over the terminal
histories have been omitted).

In their seminal book, von Neumann and Morgenstern (1944) showed that
a dynamic game can be reduced to a normal-form (or strategic-form) game
by defining strategies as complete, contingent plans of action. In the case of
perfect-information games a strategy for a player is a function that associates
with every decision history assigned to that player one of the choices available
there. For example, a possible strategy of Player 1 in the game of Figure 3 is
(a1, d2). A profile of strategies (one for each player) determines a unique path
from the null history (the root of the tree) to a terminal history (a leaf of the
tree). Figure 4 shows the strategic-form corresponding to the extensive form of
Figure 3.

How should a model of a dynamic game be constructed? One approach in
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the literature (see, for example, Aumann (1995)) has been to consider models
of the corresponding strategic-form (the type of models considered in Section
2: see Definition 2.3). However, there are several conceptual issues that arise
in this context. Recall that the interpretation of si = σi(ω) suggested in Section
2 is that at state ω player i “chooses” strategy si. Now consider a model of
the game of Figure 3 and a state ω where σ1(ω) = (a1, d2). What does it mean
to say that Player 1 “chooses” strategy (a1, d2)? The first part of the strategy,
namely a1, can be interpreted as a description of Player 1’s actual choice to play
a1, but the second part of the strategy, namely d2, has no such interpretation:
if Player 1 in fact plays a1 then he knows that he will not have to make any
further choices and thus it is not clear what it means for him to “choose” to
play d2 in a situation that is made impossible by his decision to play a1.20 Thus
it does not seem to make sense to interpret σ1(ω) = (a1, d2) as ‘at state ω Player
1 chooses (a1, d2)’. Perhaps the correct interpretation is in terms of a more
complex sentence such as ‘Player 1 chooses to play a1 and if - contrary to this -
he were to play a2 and Player 2 were to follow with c2, then Player 1 would play
d2’. Thus while in a simultaneous game the association of a strategy of player
i to a state can be interpreted as a description of player i’s actual behavior at
that state, in the case of dynamic games this interpretation is no longer valid,
since one would end up describing not only the actual behavior of player i but
also his counterfactual behavior. Methodologically, this is not satisfactory: if it
is considered to be necessary to specify what a player would do in situations
that do not occur in the state under consideration, then one should model the
counterfactual explicitly. But why should it be necessary to specify at state ω
(where Player 1 is playing a1) what he would do at the counterfactual history
a2c2? Perhaps what matters is not so much what Player 1 would actually do
there but what Player 2 believes that Player 1 would do: after all, Player 2 might
not know that Player 1 has decided to play a1 and needs to consider what to
do in the eventuality that Player 1 actually ends up playing a2. So, perhaps,
the strategy of Player 1 is to be interpreted as having two components: (1) a
description of Player 1’s behavior and (2) a conjecture in the mind of Player 2
about what Player 1 would do.21 If this is the correct interpretation, then one

20For this reason, some authors (see, for example, Perea (2012)), instead of using strategies, use
the weaker notion of “plan of action” introduced by Rubinstein (1991). A plan of action for a
player only contains choices that are not ruled out by his earlier choices. For example, the possible
plans of action for Player 1 in the game of Figure 3 are a1, (a2, d1) and (a2, d2). However, most of the
issues raised below apply also to plans of action. The reason for this is that a choice of player i at a
later decision history of his may be counterfactual at a state because of the choices of other players
(which prevent that history from being reached).

21This interpretation of strategies has in fact been put forward in the literature for the case of



G Bonanno 15

could object - from a methodological point of view - that it would be preferable
to disentangle the two components and model them explicitly.

In order to clarify these issues it seems that, in the case of dynamic games,
one should not adopt the models of Section 2 and instead consider a more
general notion of model, where states are described in terms of players’ actual
behavior and any relevant counterfactual propositions are modeled explicitly.

We shall first consider models obtained by adding a counterfactual selection
function (see Definition 2.4) to an interactive belief structure (see Definition 2.1)
and show that such models are not adequate.

Fix a dynamic game Γ with perfect information and consider the following
candidate for a definition of a model of Γ: it is a tuple

〈
N,Ω, {Bi}i∈N , f , ζ

〉
where

〈N,Ω, {Bi}i∈N〉 is an interactive belief structure, f : Ω×E → 2Ω is a counterfactual
selection function and ζ : Ω → Z is a function that associates with every state
ω ∈ Ω a terminal history (recall that Z denotes the set of terminal histories in
Γ).22 Given a history h in the game, we denote by [h] the set of states where
h is reached, that is, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}. We take the set of
admissible hypotheses E (the domain of f (ω, ·)) to be the set of propositions of
the form “history h is reached”, that is, E = {[h] : h ∈ H} (where H is the set of
histories in the game). We now discuss a number of issues that arise in such
models.

In the models of Section 2 it was assumed that a player always knows his
own strategy (see (4) above). Should a similar assumption be made within the
context of dynamic games? That is, suppose that at state ω player i takes action
a; should we assume that player i believes that she takes action a? For example,
consider a model of the game of Figure 3 in which there are two states,ω andω′,
such that B2(ω) = {ω,ω′} and ζ(ω) = a1b1. Then at state ω Player 2 takes action
b1. Should we require that Player 2 take action b1 also at ω′ (since ω′ ∈ B2(ω))?
The answer is negative: the relation B2 represents the prior or initial beliefs
of Player 2 (that is, her beliefs before the game begins) and Player 2 may be
uncertain as to whether Player 1 will play a1 or a2 and plan to play herself b1
in the former case and c1 in the latter case. Thus it makes perfect sense to have
ζ(ω′) = a2c1. If we want to rule out uncertainty by a player about her action at
a decision history of hers, then we need to impose the following restriction:

mixed strategies (which we do not consider in this chapter, given our non-probabilistic approach):
see, for example, Aumann and Brandenburger (1995) and the references given there in Footnote 7.

22Samet (1996) was the first to propose models of perfect-information games where states are
described not in terms of strategies but in terms of terminal histories.
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If h is a decision history of player i, a an action available to i at h
and ha a prefix of ζ(ω) then, ∀ω′ ∈ Bi(ω),
if h is a prefix of ζ(ω′) then ha is a prefix of ζ(ω′).

(10)

The above definition can be stated more succinctly in terms of events. If E
and F are two events, we denote by E→ F the event¬E∪F (we use the negation
symbol ¬ to denote the set-theoretic complement, that is, ¬E is the complement
of event E). Thus E → F captures the material conditional. Recall that, given
a history h in the game, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}; recall also that
Di denotes the set of decision histories of player i and A(h) the set of choices
available at h. Then (10) can be stated as follows:

∀h ∈ Di,∀a ∈ A(h),
[ha] ⊆ Bi([h]→ [ha]).

(11)

In words: if, at a state, player i takes action a at her decision history h, then she
believes that if h is reached then she takes action a.23

A more subtle issue is whether we should require (perhaps as a condition
of rationality) that a player have correct beliefs about what she would do in a
situation that she believes will not arise. Consider, for example, the (part of
a) model of the game of Figure 3 illustrated in Figure 5. The first line gives
B2, the doxastic accessibility relation of Player 2, the second line the function
ζ (which associates with every state a terminal history) and the third line is
a partial illustration of the counterfactual selection function: the arrow from
state β to state α labeled with the set {α, δ} represents f (β, {α, δ}) = {α} and the
arrow from γ to δ labeled with the set {α, δ} represents f (γ, {α, δ}) = {δ}.24 Note
that the event that Player 1 plays a2 is the set of states ω where a2 is a prefix
of ζ(ω): [a2] = {α, δ}. Recall that E ⇒ F denotes the counterfactual conditional
‘if E were the case then F would be the case’. Now, [a2] ⇒ [a2c1] = {γ, δ} and

23Note that, if at state ω player i believes that history h will not be reached (∀ω′ ∈ Bi(ω), ω′ < [h])
then Bi(ω) ⊆ ¬[h] ⊆ [h] → [ha], so that ω ∈ Bi ([h]→ [ha]) and therefore (11) is trivially satisfied
(even if ω ∈ [ha]).

24On the other hand, we have not represented the fact that f (α, {α, δ}) = {α}, which follows from
point 3 of Definition 2.4 (since α ∈ {α, δ}) and the fact that f (δ, {α, δ}) = {δ}, which also follows from
point 3 of Definition 2.4. We have also omitted other values of the selection function f , which are
not relevant for the discussion below.
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Figure 5: Part of a model of the game of Figure 3
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[a2] ⇒ [a2c2] = {α, β}.25 Thus β ∈ [a2] ⇒ [a2c2] and also β ∈ B2 ([a2]⇒ [a2c1]).26

That is, at state β it is actually the case that if Player 1 were to play a2 then Player
2 would respond with c2, but Player 2 erroneously believes that (if Player 1 were
to play a2) she would respond with c1.

As a condition of rationality, should one rule out situations like the one
illustrated in Figure 5? Shouldn’t a rational player have introspective access
to what she would do in all the relevant hypothetical situations? In general,
it seems that the answer should be negative, since what an individual would
do in counterfactual situations may depend on external circumstances (e.g.
states of the world or actions of other individuals) which the player might be
unaware of (or have erroneous beliefs about). In such circumstances no amount
of introspection can aid the individual in acquiring awareness of, or forming
correct beliefs about, these external circumstances. This observation might
not be applicable to games of complete information, but might be relevant in
situations of incomplete information.27

There are further issues to be examined. Consider, again, the perfect infor-
mation game of Figure 3 and a model of this game in which there is a state, say
α, where Player 1 plays a2. Is a2 a rational choice for Player 1? Answering this
question requires answering the following two questions:

Q1. What will Player 2 do next?
Q2. What would Player 2 do if, instead, a1 had been chosen?

Let us start with Q1. Consider a model (different from the one described in
Figure 5) where at state α the play of the game is a2c2d1 (that is, ζ(α) = a2c2d1).
If there is “common recognition” of rationality, Player 1 will ask himself how a
rational Player 2 will respond to his initial choice of a2. In order to determine
what is rational for Player 2 to do at state α, we need to examine Player 2’s
beliefs at α. Suppose that Player 2 mistakenly believes that Player 1 will play

25Recall that, by Definition 2.4, since α ∈ [a2], f (α, [a2]) = {α}, so that, since α ∈ [a2c2] (because a2c2
is a prefix of ζ(α) = a2c2d2), α ∈ [a2]⇒ [a2c2]. Furthermore, since f (β, [a2]) = {α}, β ∈ [a2]⇒ [a2c2].
There is no other state ω where f (ω, [a2]) ⊆ [a2c2]. Thus [a2] ⇒ [a2c2] = {α, β}. The argument for
[a2]⇒ [a2c1] = {γ, δ} is similar.

26Since B2(β) = {γ} and γ ∈ [a2] ⇒ [a2c1], β ∈ B2 ([a2]⇒ [a2c1]). Recall that the material
conditional ‘if E is the case then F is the case’ is captured by the event ¬E ∪ F, which we denote by
E→ F. Then [a2]→ [a2c1] = {β, γ, δ} and [a2]→ [a2c2] = {α, β, γ}, so that we also have, trivially, that
β ∈ B2 ([a2]→ [a2c1]) and β ∈ B2 ([a2]→ [a2c2]).

27Recall that a game is said to have complete information if the game itself is common knowledge
among the players. On the other hand, in a situation of incomplete information at least one player
lacks knowledge of some of the aspects of the game, such as the preferences of her opponents, or
the actions available to them, or the possible outcomes, etc.
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a1 (α ∈ B2[a1]); for example, B2(α) = {β} and β ∈ [a1]. Furthermore, suppose
that f (β, [a2]) = {γ} and γ ∈ [a2c2d2]. Then at α Player 2 believes that if it were
the case that Player 1 played a2 then the play of the game would be a2c2d2
(α ∈ B2([a2] ⇒ [a2c2d2])), in particular, she believes that Player 1 would play d2.
Since, at state α, Player 1 in fact plays a2, Player 2 will be surprised: she will be
informed that Player 1 played a2 and that she herself has to choose between c1
and c2. What choice she will make depends on her beliefs after she learns that
(contrary to her initial expectation) Player 1 played a2, that is, on her revised
beliefs. In general, no restrictions can be imposed on Player 2’s revised beliefs
after a surprise: for example, it seems perfectly plausible to allow Player 2 to
become convinced that the play of the game will be a2c2d1; in particular, that
Player 1 will play d1. The models that we are considering do not provide us
with the tools to express such a change of mind for Player 2: if one takes as her
revised beliefs her initial beliefs about counterfactual statements that have a2
as an antecedent, then - since α ∈ B2([a2]⇒ [a2c2d2]) - one is forced to rule out
the possibility that after learning that Player 1 played a2 Player 2 will believe
that the play of the game will be a2c2d1. Stalnaker argues that imposing such
restrictions is conceptually wrong, since it is based on confounding causal with
epistemic counterfactuals:

“Player 2 has the following initial belief: Player 1 would choose d2
on his second move [after his initial choice of a2] if he had a second
move. This is a causal ‘if’ – an ‘if’ used to express 2’s opinion
about 1’s disposition to act in a situation that she believes will not
arise. [...] But to ask what Player 2 would believe about Player 1
if she learned that she was wrong about 1’s first choice is to ask
a completely different question – this ‘if’ is epistemic; it concerns
Player 2’s belief revision policies, and not Player 1’s disposition to
act.” (Stalnaker (1998), p. 48; with small changes to adapt the quote
to the game of Figure 3.)

Let us now turn to question Q2. Suppose that, as in the previous example,
we are considering a model of the game of Figure 3 and a state α in that model
where

α ∈ [a2c2d1] ∩ B1[a2] ∩ B2[a1b1] ∩ B1B2[a1b1] (12)

(for example, (12) is satisfied if B1(α) = {α},B2(α) = {β} and β ∈ [a1b1]). Thus
at α Player 1 plays a2. Is this a rational choice? The answer depends on how
Player 2 would respond to the alternative choice of a1. However, since the
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rationality of playing a2 has to be judged relative to Player 1’s beliefs, what
matters is not what Player 2 would actually do (at state α) if a1 were to be
played, but what Player 1 believes that Player 2 would do. How should we
model such beliefs of Player 1? Again, one possibility is to refer to Player 1’s
beliefs about counterfactuals with [a1] as antecedent. If we follow this route,
then we restrict the possible beliefs of Player 1; in particular, it cannot be the
case that Player 1 believes that if he were to play a1 then Player 2 would play
b2, that is, we cannot have α ∈ B1([a1] ⇒ [a1b2]). Intuitively, the reason is as
follows (the formal proof will follow). The counterfactual selection function is
meant to capture causal relationships between events. As Stalnaker points out,
in the counterfactual world where a player makes a choice different from the
one that he is actually making, the prior beliefs of the other players must be the
same as in the actual world (by changing his choice he cannot cause the prior
beliefs of his opponents to change):

“I know, for example, that it would be irrational to cooperate in a
one-shot prisoners’ dilemma because I know that in the counterfac-
tual situation in which I cooperate, my payoff is less than it would
be if I defected. And while I have the capacity to influence my
payoff (negatively) by making this alternative choice, I could not,
by making this choice, influence your prior beliefs about what I will
do; that is, your prior beliefs will be the same, in the counterfactual
situation in which I make the alternative choice, as they are in the
actual situation.” (Stalnaker (2006), p. 178)

The formal proof that it cannot be the case that α ∈ B1([a1] ⇒ [a1b2]) goes as
follows. Suppose that α ∈ B1([a1] ⇒ [a1b2]) and fix an arbitrary ω ∈ B1(α).
By (12), since α ∈ B1[a2], ω ∈ [a2]. Fix an arbitrary δ ∈ f (ω, [a1]). Since
α ∈ B1([a1]⇒ [a1b2]), andω ∈ B1(α),ω ∈ [a1]⇒ [a1b2], that is, f (ω, [a1]) ⊆ [a1b2].
Thus

δ ∈ [a1b2]. (13)

Since ω ∈ B1(α) and α ∈ B1B2([a1b1]), ω ∈ B2[a1b1]. By the above remark, at δ
the initial beliefs of Player 2 must be the same as at ω.28 Hence δ ∈ B2[a1b1].
By definition, δ ∈ B2[a1b1] if and only if B2(δ) ⊆ [a1b1]. Thus, since [a1b1] ⊆
¬[a1]∪ [a1b1] = [a1]→ [a1b1], B2(δ) ⊆ [a1]→ [a1b1], that is, δ ∈ B2([a1]→ [a1b1]).
Now, (11) requires that, since δ ∈ [a1b2], δ ∈ B2([a1] → [a1b2]). Hence, since

28As shown above, at state ω Player 1 chooses a2; f (ω, [a1]) is the set of states closest to ω where
Player 1 chooses a1; in these states Player 2’s prior beliefs must be the same as at ω, otherwise by
switching from a2 to a1 Player 1 would cause a change in Player 2’s prior beliefs.
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δ ∈ B2[a1], δ ∈ B2[a1b2], contradicting (13).
In words, since α ∈ B1B2[a1b1], at every state ω that Player 1 considers possible
at α (ω ∈ B1(α)) Player 2 believes that the play of the game is a1b1, that is, that
she herself will play b1. If α ∈ B1([a1] ⇒ [a1b2]) then ω ∈ [a1] ⇒ [a1b2]; thus, if
δ is a state closest to ω where Player 1 plays a1, then (by the second property
of counterfactual selection functions) at δ Player 2 will actually play b2. Since
Player 1, by changing his choice, cannot cause the initial beliefs of Player 2 to
change, Player 2 must have at δ the same beliefs that she has at ω, namely that
she will play b1. Thus at state δ Player 2 believes that she will take action b1
at her decision history a1 while in fact she will take action b2, contradicting the
requirement expressed in (11).

Thus we have shown that adding a counterfactual selection function to an
interactive belief structure does not provide an adequate notion of model of a
dynamic game. The approach followed in the literature29 has been to do without
an “objective” counterfactual selection function f and to introduce in its place
“subjective” counterfactual functions fi (one for each player i ∈ N) representing
the players’ dispositions to revise their beliefs under various hypotheses.30 This
is the topic of the next section.

4 Belief revision

We will now consider models of dynamic games defined as tuples〈
N,Ω, {Bi}i∈N , {Ei, fi}i∈N, ζ

〉
where - as before - 〈N,Ω, {Bi}i∈N〉 is an interactive

belief structure and ζ : Ω → Z is a function that associates with every state
ω ∈ Ω a terminal history. The new element is {Ei, fi} (for every player i ∈ N),
which is a subjective counterfactual selection function, defined as follows.

Definition 4.1. For every i ∈ N, let Ei ⊆ 2Ω
\∅ be a set of events representing

potential items of information or admissible hypotheses for player i.31 A sub-
jective counterfactual selection function is a function fi : Ω×Ei → 2Ω that satisfies

29See, for example, Arló-Costa and Bicchieri (2007), Baltag et al. (2009), Battigalli et al. (2013),
Board (1998), Bonanno (2011), Clausing (2004), Halpern (1999a), Samet (1996).

30In Clausing (2004) there is also an objective counterfactual selection function, but it is used
only to encode the structure of the game in the syntax.

31For example, in a perfect-information game one can take Ei = {[h] : h ∈ Di}, that is, the set of
propositions of the form “decision history h of player i is reached” or Ei = {[h] : h ∈ H}, the set of
propositions corresponding to all histories (in which case Ei = E j for any two players i and j).
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the following properties: ∀ω ∈ Ω, ∀E,F ∈ Ei,

1. fi(ω,E) , ∅,
2. fi(ω,E) ⊆ E,
3. if Bi(ω) ∩ E , ∅ then fi(ω,E) = Bi(ω) ∩ E,
4. if E ⊆ F and fi(ω,F) ∩ E , ∅ then fi(ω,E) = fi(ω,F) ∩ E.

The event fi(ω,E) is interpreted as the set of states that player i would
consider possible, at state ω, under the supposition that (or if informed that)
E is true. Condition 1 requires these suppositional beliefs to be consistent.
Condition 2 requires that E be indeed considered true. Condition 3 says that
if E is compatible with the initial beliefs then the suppositional beliefs coincide
with the initial beliefs conditioned on event E.32 Condition 4 is an extension
of 3: if E implies F and E is compatible (not with player i’s prior beliefs but)
with the posterior beliefs that she would have if she supposed (or learned) that F
were the case (let’s call these her posterior F-beliefs), then her beliefs under the
supposition (or information) that E must coincide with her posterior F-beliefs
conditioned on event E.33

Remark 1. If Ei = 2Ω
\∅ then Conditions 1-4 in Definition 4.1 imply that, for every

ω ∈ Ω, there exists a “plausibility” relation Qω
i on Ω which is complete (∀ω1, ω2 ∈ Ω,

either ω1Qω
i ω2 or ω2Qω

i ω1 or both) and transitive (∀ω1, ω2, ω3 ∈ Ω, if ω1Qω
i ω2 and

ω2Qω
i ω3 thenω1Qω

i ω3) and such that, for every non-empty E ⊆ Ω, fi(ω,E) = {x ∈ E :
xQω

i y, ∀y ∈ E}. The interpretation ofαQω
i β is that - at stateω and according to player i

- state α is at least as plausible as state β. Thus fi(ω,E) is the set of most plausible states
in E (according to player i at state ω). If Ei , 2Ω

\∅ then Conditions 1-4 in Definition
4.1 are necessary but not sufficient for the existence of such a plausibility relation. The
existence of a plausibility relation that rationalizes the function fi(ω, ·) : Ei → 2Ω is
necessary and sufficient for the belief revision policy encoded in fi(ω, ·) to be compatible
with the theory of belief revision introduced in Alchourrón et al. (1985), known as the
AGM theory (see Bonanno (2009)).

One can associate with each function fi an operator ⇒i : Ei × 2Ω
→ 2Ω as

follows:
32Note that it follows from Condition 3 and seriality ofBi that, for every ω ∈ Ω, fi(ω,Ω) = Bi(ω),

so that one could simplify the definition of model by dropping the relations Bi and recovering the
initial beliefs from the set fi(ω,Ω). We have chosen not to do so in order to maintain continuity in
the exposition.

33Although widely accepted, this principle of belief revision is not uncontroversial (see Rabi-
nowicz (1996) and Stalnaker (2009)).
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E⇒i F = {ω ∈ Ω : fi(ω,E) ⊆ F}. (14)

Possible interpretations of the event E⇒i F are “according to player i, if E were
the case, then F would be true” (Halpern (1999a)) or “if informed that E, player
i would believe that F” (Stalnaker (1998)) or “under the supposition that E,
player i would believe that F” (Arló-Costa and Bicchieri (2007)).34

Thus the function fi can be used to model the full epistemic state of player
i; in particular, how player i would revise her prior beliefs if she contemplated
information that contradicted those beliefs. However, as pointed out by Stal-
naker,

”It should be noted that even with the addition of the belief
revision structure to the epistemic models [...], they remain static
models. A model of this kind represents only the agent’s beliefs at
a fixed time [before the game is played], together with the policies
or dispositions to revise her beliefs that she has at that time. The
model does not represent any actual revisions that are made when
new information is actually received.”(Stalnaker (2006), p. 198.)35

Condition (11) rules out the possibility that a player may be uncertain about
her own choice of action at decision histories of hers that are not ruled out by her
initial beliefs. Does a corresponding restriction hold for revised beliefs? That is,
suppose that at state ω player i erroneously believes that her decision history h
will not be reached (ω ∈ [h] butω ∈ Bi¬[h]); suppose also that a is the action that
she will choose at h (ω ∈ [ha]). Is it necessarily the case that, according to her
revised beliefs on the suppositions that h is reached, she believes that she takes
action a? That is, is it the case that ω ∈ [h] ⇒i [ha]? In general, the answer is
negative. For example, consider a model of the game of Figure 3 in which there
are states α, β and γ such that α ∈ [a1b1], B2(α) = {β}, β ∈ [a2c1], f2(α, [a1]) = {γ}
and γ ∈ [a1b2]. Then we have that at state α Player 2 will in fact take action
b1 (after being surprised by Player 1’s choice of a1) and yet, according to her
revised beliefs on the supposition that Player 1 plays a1, she does not believe

34Equivalently, one can think of⇒i as a conditional belief operator Bi(·|·) with the interpretation
of Bi(F|E) as ‘player i believes F given information/supposition E’ (see, for example, Board (2004)
who uses the notation BE

i (F) instead of Bi(F|E)).
35The author goes on to say that “The models can be enriched by adding a temporal dimension

to represent the dynamics, but doing so requires that the knowledge and belief operators be time
indexed...” For a model where the belief operators are indeed time indexed and represent the actual
beliefs of the players when actually informed that it is their turn to move, see Bonanno (2013).
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that she would take action b1 (in fact she believes that she would take action
b2): α < [a1]⇒i [a1b1]. In order to rule this out we need to impose the following
strengthening of (11):36

∀h ∈ Di, ∀a ∈ A(h),
[ha] ⊆ ([h]⇒i [ha]).

(15)

Should (15) be considered a necessary component of a definition of ratio-
nality? Perhaps so, if the revised beliefs were the actual beliefs of player i when
she is actually informed (to her surprise) that her decision history h has been
reached. In that case it may be reasonable to assume that - as the player makes
up her mind about what to do - she forms correct beliefs about what she is
going to do. However, we stressed above that the models we are considering
are static models: they represent the initial beliefs and disposition to revise
those beliefs at the beginning of the game. Given this interpretation of the
revised beliefs as hypothetical beliefs conditional on various suppositions, it
seems that violations of (15) might be perfectly rational. To illustrate this point,
consider the above example with the following modification: f2(α, [a1]) = {α, γ}.
It is possible that if Player 1 plays a1, Player 2 is indifferent between playing
b1 or b2 (she gets the same payoff). Thus she can coherently form the belief
that if - contrary to what she expects - Player 1 were to play a1, then she might
end up choosing either b1 or b2: α ∈ [a1] ⇒i ([a1b1] ∪ [a1b2]). Of course, when
actually faced with the choice between b1 and b2 she will have to break her
indifference and pick one action (perhaps by tossing a coin): in the example
under consideration (where α ∈ [a1b1]) she will pick b1 (perhaps because the
outcome of the coin toss is Heads: something she will know then but cannot
know at the beginning).

How can rationality of choice be captured in the models that we are con-
sidering? Various definitions of rationality have been suggested in the litera-

36 (15) is implied by (11) whenever player i’s initial beliefs do not rule out h. That is, ifω ∈ ¬Bi¬[h]
(equivalently, Bi(ω) ∩ [h] , ∅) then, for every a ∈ A(h),

if ω ∈ [ha] then ω ∈ ([h]⇒i [ha]) . (F1)

In fact, by Condition 3 of Definition 4.1 (since, by hypothesis, Bi(ω) ∩ [h] , ∅),

fi(ω, [h]) = Bi(ω) ∩ [h]. (F2)

Let a ∈ A(h) be such that ω ∈ [ha]. Then, by (11), ω ∈ Bi([h] → [ha]), that is, Bi(ω) ⊆ ¬[h] ∪ [ha].
ThusBi(ω)∩ [h] ⊆ (¬[h] ∩ [h])∪ ([ha] ∩ [h]) = ∅∪ [ha] = [ha] (since [ha] ⊆ [h]) and therefore, by (F2),
fi(ω, [h]) ⊆ [ha], that is, ω ∈ [h]⇒i [ha].
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ture, most notably material rationality and substantive rationality (Aumann (1995;
1998)). The former notion is weaker in that a player can be found to be irra-
tional only at decision histories of hers that are actually reached. The latter
notion, on the other hand, is more stringent since a player can be judged to be
irrational at a decision history h of hers even if she knows that h will not be
reached. We will focus on the weaker notion of material rationality. We want
to define a player’s rationality as a proposition, that is, an event. Let ui : Z→ R
be player i’s ordinal utility function (representing her preferences over the set
of terminal histories Z) and define πi : Ω → R by πi(ω) = ui(ζ(ω)). For every
x ∈ R, let [πi ≤ x] be the event that player i’s payoff is not greater than x, that is,
[πi ≤ x] = {ω ∈ Ω : πi(ω) ≤ x} and, similarly, let [πi > x] = {ω ∈ Ω : πi(ω) > x}.
Then we say that player i is materially rational at a state if, for every decision
history h of hers that is actually reached at that state and for every real number
x, it is not the case that she believes – under the supposition that h is reached –
that (1) her payoff from her actual choice would not be greater than x and (2)
her payoff would be greater than x if she were to take an action different from
the one that she is actually taking (at that history in that state).37

Formally this can be stated as follows (recall that Di denotes the set of
decision histories of player i and A(h) the set of actions available at h):

Player i is materially rational at ω ∈ Ω if, ∀h ∈ Di,∀a ∈ A(h)
if ha is a prefix of ζ(ω) then, ∀b ∈ A(h), ∀x ∈ R,
([ha]⇒i [πi ≤ x])→ ¬ ([hb]⇒i [πi > x]) .

(16)

Note that, in general, we cannot replace the antecedent [ha]⇒i [πi ≤ x] with
Bi([ha] → [πi ≤ x]), because at state ω player i might initially believe that h
will not be reached, in which case it would be trivially true that ω ∈ Bi([ha]→
[πi ≤ x]). Thus, in general, her rationality is judged on the basis of her revised
beliefs on the supposition that h is reached. Note, however, that if ω ∈ ¬Bi¬[h],
that is, if at ω she does not rule out the possibility that h will be reached and
a ∈ A(h) is the action that she actually takes atω (ω ∈ [ha]), then, for every event
F, ω ∈ Bi([ha] → F) if and only if ω ∈ ([ha]⇒i F).38 Note also that, according

37This is a “local ” definition in that it only considers, for every decision history of player i, a
change in player i’s choice at that decision history and not also at later decision histories of hers (if
any). One could make the definition of rationality more stringent by simultaneously considering
changes in the choices at a decision history and subsequent decision histories of the same player
(if any).

38Proof. Suppose that ω ∈ [ha] ∩ ¬Bi¬[h]. As shown in Footnote 36 (see (F2)),

Bi(ω) ∩ [h] = fi(ω, [h]). (G1)



26 Rational play

to (16), a player is trivially rational at any state at which she does not take any
actions.

The solution concept which is normally used for perfect-information games
is the backward-induction solution, which is obtained as follows. Start from
a decision history followed only by terminal histories (such as history a1a2
in the game of Figure 6) and pick an action there that is payoff-maximizing
for the corresponding player; delete the selected decision history, turn it into
a terminal history and associate with it the payoff vector corresponding to
the selected choice; repeat the procedure until all the decision histories have
been exhausted. For example, the backward-induction solution of the game of
Figure 6 selects actions d3 and d1 for Player 1 and d2 for Player 2, so that the
corresponding outcome is d1.

Does initial common belief that all the players are materially rational (ac-
cording to (16)) imply backward induction in perfect-information games? The
answer is negative.39 To see this, consider the perfect-information game shown
in Figure 6 and the model of it shown in Figure 7.40 First of all, note that the
common belief relation B∗ is obtained by adding to B2 the pair (β, β); thus, in
particular, B∗(β) = {β, γ}. We want to show that both players are materially
rational at both states β and γ, so that at state β it is common belief that both
players are materially rational, despite that fact that the play of the game at β

Since [ha] ⊆ [h],

Bi(ω) ∩ [h] ∩ [ha] = Bi(ω) ∩ [ha]. (G2)

As shown in Footnote 36, fi(ω, [h]) ⊆ [ha] and, by Condition 1 of Definition 4.1, fi(ω, [h]) , ∅. Thus
fi(ω, [h]) ∩ [ha] = fi(ω, [h]) , ∅. Hence, by Condition 4 of Definition 4.1,

fi(ω, [h]) ∩ [ha] = fi(ω, [ha]). (G3)

By intersecting both sides of (G1) with [ha] and using (G2) and (G3) we get that Bi(ω) ∩ [ha] =
fi(ω, [ha]).

39In fact, common belief of material rationality does not even imply a Nash equilibrium outcome.
A Nash equilibrium is a strategy profile satisfying the property that no player can increase her payoff
by unilaterally changing her strategy. A Nash equilibrium outcome of a perfect-information game
is a terminal history associated with a Nash equilibrium. A backward-induction solution of a
perfect-information game can be written as a strategy profile and is always a Nash equilibrium.

40In Figure 6, for every terminal history, the top number associated with it is Player 1’s utility
and the bottom number is Player 2’s utility. In Figure 7 we have only represented parts of the
functions f1 and f2, namely that f1(γ, {α, β, δ}) = {δ} and f2(β, {α, β, δ}) = f2(γ, {α, β, δ}) = {α} (note
that [a1] = {α, β, δ}). Similar examples can be found in Board (2004), Clausing (2004), Rabinowicz
(2000), Stalnaker (1998).
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Figure 6: A perfect information game

is a1a2d3, while the outcome associated with the backward-induction solution
is d1 (furthermore, there is no Nash equilibrium whose associated outcome is
a1a2d3). Clearly, Player 1 is materially rational at state β (since he obtains his
largest possible payoff); he is also rational at state γ because he knows that he
plays d1, obtaining a payoff of 1, and believes that if he were to play a1 Player
2 would respond with d2 and give him a payoff of zero: this belief is encoded
in f1(γ, [a1]) = {δ} (where [a1] = {α, β, δ}) and ζ(δ) = a1d2. Player 2 is trivially
materially rational at state γ since she does not take any actions there. Now
consider state β. Player 2 initially erroneously believes that Player 1 will end
the game by playing d1; however, Player 1 is in fact playing a1 and thus Player 2
will be surprised. Her initial disposition to revise her beliefs on the supposition
that Player 1 plays a1 is such that she would believe that she herself would
play a2 and Player 1 would follow with a3, thus giving her the largest possible
payoff (this belief is encoded in f2(β, [a1]) = {α} and ζ(α) = a1a2a3). Hence she is
rational at state β, according to (16).

In order to obtain the backward-induction solution, one needs to go be-
yond common initial belief of material rationality. Proposals in the literature
include the notions of epistemic independence (Stalnaker (1998)), strong belief
(Battigalli and Siniscalchi (2002)), stable belief (Baltag et al. (2009)), substantive
rationality (Aumann (1995), Halpern (2001)). For an overview of this literature
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the reader is referred to Brandenburger (2007) and Perea (2007).

It is worth stressing that in the models considered above, strategies do not play
any role: states are described in terms of the players’ actual behavior along
a play of the game.41 One could view a player’s strategy as her (conditional)
beliefs about what she would do under the supposition that each of her decision
histories is reached. However, the models considered so far do not guarantee
that a player’s revised beliefs select a unique action at each of her decision
histories. For example, consider a model of the game of Figure 3 in which there
are states α, β and γ such that α ∈ [a2c1], B2(α) = {α}, β ∈ [a1b1], γ ∈ [a1b2] and
f2(α, [a1]) = {β, γ}. Then, at state α, Player 2 knows that she will take action
c1 and, according to her revised beliefs on the supposition that Player 1 plays
a1, she is uncertain as to whether she would respond to a1 by playing b1 or
b2 (perhaps she is indifferent between b1 and b2, because she would get the
same payoff in either case). One could rule this possibility out by imposing the
following restriction:

∀h ∈ Di,∀a, b ∈ A(h),∀ω,ω′, ω′′ ∈ Ω, if ω′, ω′′ ∈ fi(ω, [h])
and ha is a prefix of ζ(ω′) and hb is a prefix of ζ(ω′′) then a = b.

(17)

If (17) is imposed then one can associate with every state a unique strategy
for every player. However, as Samet (1996) points out, in this setup strategies
would be cognitive constructs rather than objective counterfactuals about what
a player would actually do at each of her decision histories.

5 Conclusion

Roughly speaking, a player’s choice is rational if, according to what the player
believes, there is no other choice which is better for her. Thus, in order to be
able to assess the rationality of a player, one needs to be able to represent both
the player’s choices and her beliefs. The notion of a model of a game does
precisely this. We have discussed a number of conceptual issues that arise in
attempting to represent not only the actual beliefs but also the counterfactual
or hypothetical beliefs of the players. These issues highlight the complexity
of defining the notion of rationality in dynamic games and of specifying an

41For an example of epistemic models of dynamic games where strategies do play a role see
Perea (2014).



30 Rational play

appropriate interpretation of the hypothesis that there is “common recognition”
of rationality.

A strategy of a player in a dynamic game with perfect information, accord-
ing to the definition first proposed by von Neumann and Morgenstern (von
Neumann and Morgenstern (1944)), is a complete contingent plan specifying
a choice of action for every decision history that belongs to that player.42 We
have argued that using the notion of strategy in models of dynamic games is
problematic, since it implicitly introduces counterfactual considerations, both
objective (in terms of statements about what a player would do in situations
that do not arise) and subjective (in terms of the hypothetical or conditional
beliefs of the players). Such counterfactuals ought to be modeled explicitly.
We first considered the use of objective counterfactuals in models of dynamic
games, but concluded that such counterfactuals are inadequate, since they ex-
press causal relationships, while it is epistemic counterfactuals that seem to be
relevant in terms of evaluating the rationality of choices. We then considered
models that make exclusive use of subjective (or epistemic) counterfactuals and
showed that in these models strategies do not play any role and can thus be
dispensed with.

The models of dynamic games considered above, however, are not the only
possibility. Instead of modeling the epistemic states of the players in terms
of their prior beliefs and prior dispositions to revise those beliefs in a static
framework, one could model the actual beliefs that the players hold at the time
at which they make their choices. In such a framework the players’ initial belief
revision policies (or dispositions to revise their initial beliefs) can be dispensed
with: the analysis can be carried out entirely in terms of the actual beliefs at
the time of choice. This alternative approach is put forward in Bonanno (2013),
where an epistemic characterization of backward induction is provided that
does not rely on (objective or subjective) counterfactuals.43,44

42In general dynamic games, a strategy specifies a choice for every information set of the player.
43Bonanno (2013) uses a dynamic framework where the set of “possible worlds” is given by

state-instant pairs (ω, t). Each state ω specifies the entire play of the game (that is, a terminal
history) and, for every instant t, (ω, t) specifies the history that is reached at that instant (in state ω).
A player is said to be active at (ω, t) if the history reached in state ω at date t is a decision history
of his. At every state-instant pair (ω, t) the beliefs of the active player provide an answer to the
question ”what will happen if I take action a?”, for every available action a. A player is said to be
rational at (ω, t) if either he is not active there or the action he ends up taking at state ω is optimal
given his beliefs at (ω, t). Backward induction is characterized in terms of the following event: the
first mover (at date 0) (i) is rational and has correct beliefs, (ii) believes that the active player at date
1 is rational and has correct beliefs, (iii) believes that the active player at date 1 believes that the
active player at date 2 is rational and has correct beliefs, etc.

44The focus of this chapter has been on the issue of modeling the notion of rationality and
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A Summary of notation

The following table summarizes the notation used in this chapter.

“common recognition” of rationality in dynamic games with perfect information. Alternatively
one can use the AGM theory of belief revision to provide foundations for refinements of Nash
equilibrium in dynamic games. This is done in Bonanno (2011; forthcominga) where a notion of
perfect Bayesian equilibrium is proposed for general dynamic games (thus allowing for imperfect
information). Perfect Bayesian equilibria constitute a refinement of subgame-perfect equilibria and
are a superset of sequential equilibria. The notion of sequential equilibrium was introduced by
Kreps and Wilson (1982).
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Notation Interpretation

Ω Set of states.

Bi Player i’s binary “doxastic accessibility” rela-
tion on Ω. The interpretation of ωBiω′ is that
at state ω player i considers state ω′ possible:
see Definition 2.1.

Bi(ω) = {ω′ ∈ Ω : ωBiω′} Belief set of player i at state ω.

Bi : 2Ω
→ 2Ω Belief operator of player i. If E ⊆ Ω then BiE

is the set of states where player i believes E,
that is, BiE = {ω ∈ Ω : Bi(ω) ⊆ E}.

B
∗ Common belief relation on the set of states Ω

(the transitive closure of the union of theBi’s).

B∗ : 2Ω
→ 2Ω Common belief operator.

〈N, {Si,%i}i∈N〉 Strategic-form game: see Definition 2.2.

f : Ω × E → 2Ω Objective counterfactual selection function.
The event f (ω,E) is interpreted as “the set
of states closest to ω where E is true”: see
Definition 2.4.

E⇒ F = {ω ∈ Ω : f (ω,E) ⊆ F} The interpretation of E⇒ F is “the set of states
where it is true that if E were the case then F
would be the case.”

〈A,H,N, ι, {%i}i∈N〉 Dynamic game with perfect information. See
Definition 3.1.

fi : Ω × Ei → 2Ω Subjective counterfactual selection function.
The event fi(ω,E) is interpreted as the set of
states that player i would consider possible,
at state ω, under the supposition that (or if
informed that) E is true: see Definition 4.1.

E⇒i F = {ω ∈ Ω : fi(ω,E) ⊆ F} The event E ⇒i F is interpreted as “the set of
states where, according to player i, if E were
the case, then F would be true”.
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