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INTRODUCTION

The possibility that agents may react discontinuously to continuous changes in their
environment does not seem to have been sufficiently investigated in the literature.
Intuition suggests that continuously changing causes should produce continuous effects.
As a consequence, if a sudden jump occurs in some observed variable, one tends to assume
that a discontinuous change must have taken place in one of the factors determining the
level of that variable. With the advent of catastrophe theory (Thom, 1972; Zeeman, 1977)
the occurrence of discontinuities in smoothly evolving systems has come to be recognized
as a not unlikely and non-pathological phenomenon. As Dodgson (1982, p. 414) observes,
“economics has been regarded as a likely area for the application of catastrophe theory but,
despite interest among economists, few applications have emerged, and these have tended’
to be speculative in nature”.! The general view among economists is probably that the types
of discontinuities envisaged by catastrophe theory arise only in rather complex and
artificial models, that is, that they are economically uninteresting. One of the purposes of
this paper is to show that “catastrophes” can arise “naturally” in very simple and standard
models.

We consider the case of a monopolist who sells to a large number of consumers who
differ in their reservation price for the commodity. We provide a simple and useful charac-
terization of profit maximization based on the hazard rate function associated with the
distribution of reservation prices. This enables us to give a simple geometrical illustration
of the nature of the discontinuities mentioned above.

The possibility of discontinuities arising from plurimodality of the profit function in the
case of monopoly has been shown before in the literature (Walters, 1980; Formby ef al.,
1982; Dodgson, 1982).” These authors, however, have restricted their attention to the case
of “convex-kink demand curve” and have not gone beyond the analysis of the effects of
changes in costs with a fixed demand curve. Furthermore, no direct application of the
classification theorem of catastrophe theory has been given.’ Finally, the possibility of
“perverse” adjustments has not been investigated.

'A list of approximately forty references on applications of catastrophe theory to economics can be
obtained from the author. For a lengthier discussion of catastrophe theory than the one given in this
paper, see Bonanno and Zeeman (1986).

*The possibility of non-pathological discontinuous responses to changes in other players’ strategies in
oligopoly was pointed out by Roberts and Sonnenschein (1977).

‘Dodgson’s paper (1982) is somewhat an exception. The author, however, restricts his attention to the
cusp catastrophe (sce Figure 5(c) ) and does not mention the other possibilities illustrated in Figure 5.
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The paper is organized as follows. In the following Section we describe the model and in
Section 111 we apply the classification theorem of catastrophe theory. Finally, in Section IV
we give an example of “perverse” adjustments to changes in demand. Section V contains
some final remarks and a conclusion.

I1. THE MobDEL
We consider the case of a monopolist who produces an indivisible good (e.g. washing

machines) and sells to a large number N of consumers. Each consumer buys at most one
unit of the good and consumers differ in their reservation price for the product (the
maximum price they are willing to pay for one unit of it). By a convenient choice of
(monetary) units we can assume that the maximum reservation price is 1. Let

f[0,11—- R (1)
be the density function of reservation prices and

F: [0,1] = [0, 1] (2)
be the corresponding cumulative distribution function. Thus, for each p ¢ [0, 1],

F(p) = proportion of consumers with reservation price < p 3)
Therefore, 1 - F(p) is the proportion of consumers whose reservation price exceeds p and

who, therefore, are willing to buy the product at price p. Hence the demand function facing
the monopolist is given by '

D(p) = N [1 - F(p)] 4)

(Note that, since F is non-decreasing, D is non-increasing).

Let the cost function of the monopolist be given by
Clg=K+cgq (5)

where K > 0 is fixed cost, ¢ > 0 is marginal cost and g denotes output. The monopolist’s
profit function is therefore given by

n(p)=N(-c)[l-Fp]l-K (6)
The first-order condition for profit maximization can be written as

p—6=% (7)

‘A possible interpretation of the model of this Section is given in the Appendix.



1987 MONOPOLY EQUILIBRIA AND CATASTROPHE THEORY 199
where
f(p)
h(p) = —=— (8)
1 - F(p)

is the hazard rate function (see, for example, Ross, 1984, p. 168) and gives the consumers
with reservation price between p and (p + dp) as a proportion of the consumers who are
willing to buy at price p."Thus if the monopolist increases his price from p to (p + dp).
100k (p) per cent of his customers will stop buying.’ The characterization of profit maximi-
zation given by (7) allows us to draw some interesting conclusions.

First of all, the shape of the demand function D depends on the properties off, since D" =
- f. Thus D is strictly concave (strictly convex) if and only if fis increasing (decreasing) and
is linear when f is constant (see Figure 1).°

.In general, the profit function can have any shape. In fact, since the hazard rate function
uniquely determines the distribution F (and thus the density f)’, we can concentrate on the
latter and generate any number of solutions to the first-order condition (7) by choosing the
hazard rate function appropriately. An example is given in Figure 2.

*Hence the first-order condition (7) has a very intuitive interpretation. Let pg be the initial price and
Dq =D(pg) = N[1 - F(pg)] the corresponding demand. Let the price be increased by Ap. Let « be the
proportion of consumers who stop buying because of the price increase. Then

_ D(po) - D(po + Ap) _ F(pg + Ap) - F(po)
D(pg) 1 - F(po)

o

Therefore the change in profits is given by
An = (1 - a) Ap Dy - a Dg (pg - ¢).
At a profit maximum, Az = 0. i.e.

Ap +pg - ¢ =Ap/a

Now,
lim  _“ =1im fP0 + 4p) - Flpo) 1
Ap=0 ap Ap=0 ap )
= _[®0) _ g
1 - F(pp)

Thus a necessary condition for pg to maximise profits is

po - ¢ =1/h(pg).

*Thus D changes shape at the modes of f.

"See, for example. Ross (1984, p. 169).
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FIGURE 1

The density function is the beta distribution with parameters
a =2 and B = 3. The corresponding c.d.f. is given by
F(p) = 3p* - 8p° + 6p2.
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The hazard rate function is given by
h(p) = 1/(- 96p3 + 513.8p% - 996.6p> + 892.1p2 - 371.5p
+ 58.2). The corresponding density and c.d.f. functions are
given by

-p “op ,
f(p) = h(p) exp |- \ h(uwdu} and F(p) = 1 - exp{- \ h(u)du } respectively.
0 0
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[t can be shown® that if p satisfics the first-order condition (7), then

41 _Oimpliesz”(p) <0 9)

dp h(p)

Thus the points at which the line of equation z =p - c intersects the graph of the function 1/
h(p), where the latter is decreasing, are local maxima of .’

Secondly, the characterization given by (7) makes comparative statics results
geometrically simple to analyze. Consider first changes in costs with a fixed demand
function (i.e. a fixed hazard rate function 4). As Figure 3 shows, an increase in marginal
cost (represented by a parallel downward shift of the line of equation z =p - ¢) may giverise
to a discontinuous increase in price. Thus even if the demand and cost functions are
smooth, the profit-maximizing price — and the corresponding output — may be discon-
tinous functions of the cost parameters. We shall show in the following Section that such
discontinuities may be unavoidable.

Consider now a change in demand with a fixed cost function. Again, as shown in Figure
4, asmoothly evolving demand may give rise to large and discontinuous adjustments in the
monopolist’s price and output. In Section IV we shall give an example where the
adjustment is somewhat surprising.

So far we have shown that a monopolist may react to small and continuous changes in
the environment (demand and/or cost conditions) with large and discontinuous
adjustments in price and output. In the next Section we apply catastrophe theory to classify
the possible types of discontinuities.

I11. THE CrassiricaTiON THEOREM OF CATASTROPHE THEORY
Let
7P xTy xTp - R (10)
(p. t1, 12) — m(p, 11, t2)

be the monopolist’s profit function, where P, T1 and T are subsets of the real line. The
decision variable is the price p, while t1 and tp are parameters which define the
environment. In order to highlight the difference between decision variable and
“Let pg be such that 7’ (pg) =0, i.e.

po - ¢ =1/h(pg) (i)

Now,gr'(pg) = N{-2f(pg) - (po - c)f'(p().)}. Thus 7”(pg) > 0 if and only if -f(pg) > f(pg) + (Po - O)F {P0)
and multiplying each side by # (pg)/[1 - F (pg)] and using (i) this is equivalent to

-[h(po)1? > k'(po)

which cannotbe true unless #'(pg) < 0. Thus 7'(pg) =0and A" (pg) > 0 implies 7" (pg) < 0. Note that the
converse of (9) is not true.

"The points at which the line of equation z = p - ¢ is tangent to the graph of the function 1/A(p) are
points of inflection of the profit function.



1987 MONOPOLY EQUILIBRIA AND CATASTROPHE THEORY 203
1
hp)
D
p-c1
p-C2
p-c3
p-¢4
D-C5
P-Cq
0 14

-Cl 1

_(:2

_CS

_C4

_cs

_C6

FIGURE 3

The hazard rate function is the same as in Figure 2. The
abscissas of the large dots are the global maxima of the
profit functions z.(p) = (p - ¢)D(p) - K.

environment, we shall write 7¢, ¢, (p). We shall mainly think of ¢{ as a demand parameter
and tp as a cost parameter. The demand and cost functions will in general be identified by
more than one parameter each. Let demand be identified by k parameters and cost by m
parameters. Then changes in demand and cost over time can be expressed by two functions

g1: [0, 1] — Rk (11)
t1 — g1(t1)

and
g2: [0, 1] - R™ (12)
2 — g2(t2)

and we can consider {1 as “the demand parameter” and ¢p as “the cost parameter”. We want
to analyze how the monopolist responds to changes in cost and/or demand.
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FIGURE 4
A smoothly evolving family of (the reciprocal of) hazard rate
functions giving rise to a discontinuous adjustment in price.
The abscissas of the large dots are the global maxima of the
profit function 7y(p) = (p - ¢)Dy(p) - K.

Let

M(ty, tp) = argmax n¢q ;z(p) =
p

=|peP / nt), 1r(p) = 7, to(P), forall p cP} (13)

be the set of profit-maximizing prices when the environment is given by (¢1, 2). In general,
Tt will have a unique global maximum at a unique point peP and so M(tq, t2) will be a
singleton. However, in special cases Tty tp may have two global maxima at the same level
at two different points p1, p2 and in this case M(t1, t2) ={p1, p2}. Moreover, such special
cases may be unavoidable, because perturbations one way may raise one of the two maxima
to be the unique global maximum, while perturbations the other way may raise the other
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maximum, causing a discontinous jump as shown in Figure 5 (b, c). Since Ty x T2 is two-
dimensional, a further complexity can arise with three global maxima at the same level, as
shown in Figure 5(d), but this is the worst possible case, as indicated by the theorem below.
Let M* (a subset of P x T x Tp) be the graph of the correspondence M(t1, 2):

M ={(p. t1.tp) € P x T x Tp / p e M(t1, t2)} (14)

Finally, let W be the set of profit functions (10) which are smooth."” We endow W with
the Whitney C®-topology (see Zeeman. 1977). We can now state the relevant classification
theorem of elementary catastrophe theory due to René Thom.

THEOREM (Thom, 1972; Zeeman, 1977). There exists an open dense subset Vof Wsuch
that if n €V, then the resulting equilibrium set M* defined by (14) is a two-dimensional
surface, which is locally equivalent'' at each point to one of the graphs shown in Figure 5.
Furthermore, the discontinuities of M* are structurally stable, that is, they cannot be
eliminated by small perturbations of .

Notice that in fact M* is a surface-with-boundary, and that the boundaries occur
whenever the the profit-maximizing price varies discontinously with the environment. In
Figure 5 the discontinuities are indicated by vertical lines (which are not actually part of
M*).

Notice also that since V is dense in W, a function in W which does not belong to Vcan be
approximated- arbitrarily closely by a function in V and, furthermore, since V is open, if
7 €V then every small perturbation of 7 also belongs to V. Thus “almost all” profit functions
belong to V.

Case (a) of Figure 5 is the intuitive situation that one would expect to observe: the profit-
maximizing price varies continuously with variations in demand and costs.

Case (b) of Figure 5 is the counterintuitive situation of “unavoidable” discontinuous
response: despite the fact that demand and cost conditions vary over a continuous range,
we observe, essentially, only two extreme policies (high price-low output, low price-high
output), rather than a continuum of policies. The two extreme policies are separated by a
line (a curve) in the (¢1, tp) space which is called the Maxwell line. This is the set of
environments at which the profit function has two global maxima at the same level. As we
move away from this line, only one of the two maxima remains a global maximum, while the
other becomes a local, but not global, maximum (which of the two remains the global
maximum depends on the direction of movement away from the Maxwell line). Therefore,
demand and cost conditions represented by two points on either side of the Maxwell line
may be so close as to be almost indistinguishable, yet they give rise to very different
equilibrium prices, p1 and pp.

"“The smoothness assumption is not a strong one, since every continuous function can be
approximated arbitrarily closely by a smooth function. In other words, smooth functions are dense in
the space of continuous functions: see Hirsh (1976, theorem 2.4, p. 47).

"“Local equivalence” means that for each p € P there is an embedding Ty x T ¢ R? underlying a
projection Ty x Tg x P— R? x Rthat throws a neighbourhood of p in M* diffeomorphically onto one
of the graphs shown in Figure 5 (see Bonanno and Zeeman, 1986). Thus the way that M* sits over
Ty x Tp, reflecting the discontinuities of the optimal pricing policy, is portrayed qualitatively
accurately by the way the graphs lie over the horizontal planes in Figure 5.
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Case (c) of Figure 5 represents the “threshold of polarization”: here the Maxwell line
ends in a point which marks the onset of polarized pricing policy in a gradually changing
environment. The graph arises from the cusp catastrophe (see Thom, 1972 and Zeeman,
1977). Before the threshold the monopolist reacts to changes in demand/cost conditions
with a continuous spectrum of prices, but after the threshold the monopolist’s pricing
policy is split into two, pq and p3. The middle choice p2 is no longer observed.

Case (d) of Figure 5 is-characterized by a Maxwell line which is Y-shaped and at the
vertex of the Y the three regions representing essentially three different pricing policies
meet.

In the next Section we give a simple example of the discontinuities shown in Figure 5,
which furthermore has some surprising features.

IV. AN ExampLE

Since the way in which changes in costs can produce discontinuous adjustments in price
and output has been shown geometrically in Section II and has been the object of investig-
ation before in the literature (Walters, 1980; Formby et al., 1982; Dodgson, 1982), we shall
give an example where the discontinuities are associated with changes in demand. In order
to simplify the exposition, we shall assume that the costs of production are zero or, equiva-
lently, that the monopolist maximizes revenue; however, our results are entirely
independent of this assumption. Let D¢(p) be the demand function at time . The example
we consider is one where demand decreases continuously over time, that is

t" > t' implies Dy (p) < Dy(p) for all p, and Dyr # Dy (15)

In particular, we shall consider the situation where (15) is determined by a general impove-
rishment of consumers, which, however, is not uniform in the sense that the rich classes
shrink proportionately more than the poor classes (this could be the effect of a tax, for
example). An example is given in the table in Figure 6, where a proportion of consumers in
each income bracket moves to the immediately preceding bracket, but at a decreasing rate:
50 per cent of the richest class, 37.5 per cent of the second richest, and 25 per cent and 12.5
per cent of the remaining two, respectively.

If this is the case, we would expect the monopolist to react by continously reducing his
price over time. Instead we show that:

(i) the reduction in price may be discontinous,

(ii) somewhat more surprisingly the monopolist may not react at all to changes in
demand (constant price over time),

(ili) even more surprisingly, the monopolist may react with a sudden increase in price
followed by a policy of constant (high) price.

Since we shall translate the changes in the distribution of income illustrated in Figure 6
into changes in the distribution of reservation prices, we have in mind a model of the type
described in the Appendix.
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income { % of consumers
($/week) I at time t =0 i at time ¢t = 1
fi }
0— 20 | 200% | 22.5%
20— 40 I 20% | 22.5%
40— 60 y 20% 22.5%
60 — 80 l 2000 | 22.50%
80 — 100 ! 20% ! 10%
2/10 l 2.25/10
I
| 1/10 ]
. ’ ’ r ,l income r : ’ r income
0 20 40 60 80 100 0 20 40 60 80 100

t=0
FIGURE 6

t=1

Between time 0 and time 1, 50% of the consumers in the
bracket 80-100 have moved down to the bracket 60-80,
37.5% of those in the bracket 60-80 have moved down to
the preceding bracket, 25% of those in the 40-60 bracket
have moved to the 20-40 bracket and 12.5% of those in
the 20-40 interval have moved down.

Consider the following two-parameter family of density functions'

fa, bP)=aif0 <p <!

bifl<p<1
"The corresponding mean and variance are given by

b+ (1-b)l

U= pfa, b(p)dp = >

and

b+ (1-b)2
v= (b - w2 fa, b (P) dp =—+—(3—#-u2

(16)
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where
j=1cb (17)
a-»>b

Figure 7 illustrates the function f5 pfor 0 < b <1 < a.

fa’ b(P)

J

s

|
|
l
I
[
|
|
l
. P
1

~ b — e — e —— —

FIGURE 7
The density function fa, p(P). Given a and b, l is
determined and equal to (1 - b)/(a - b), so that the two
shaded areas are equal.

Let F, p be the corresponding family of cumulative distribution functions and let Dy p
be the corresponding family of demand functions (given by (4) ). Then

Dg p(p)=N(1 -ap) -if0<p<! (18)

Nb-bp) ifl<p<1
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Suppose the initial distribution (at time zero) is uniform, that is, at time zero
ag=bg=1 (19)
It is easy to chéck that (15) is satisfied if
apr > ay and by < by and not both equal (20)
In Figure 8, starting from ag = bg = 1, a movement over time within the shaded area in the

South, East or South-East direction implies that demand is decreasing over time due to a
general impoverishment of consumers, as explained above."

b
(ag, bp) =(1, 1)
1
a
0 1
FIGURE 8
The arrows denote the directions along which demand
decreases over time due to a general (non-uniform)
impoverishment of consumers.
The monopolist’s profit (and revenue) function is given by
na, b(p) = p Dq, b(p) (21)

where Dy, p is given by (18). Figure 9 shows the possible shapes of the function 74 p.
It can be seen from Figure 9 that the set of optimal prices correspondingto the point (a, b) is
given by

Pltis easy to check that along such a path mean income 4 and the variance v (see footnote 12) decrease
over time.
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M(a, b) = {1/2} ' ifb>al
11/2, 1/(2a)) iftb=g"!
11/(2a)} iftb<al

Thus the Maxwell line is_the curve of equation

b=ga! @>1)

211

(22)

(23)

As explained in Section III, the Maxwell line is the set of environments (g, b) at which the
profit function 74 p(p) has two global maxima at the same level (cf. Figure 9(b) ). Thus, as
the Maxwell line is crossed, the profit-maximizing price jumps discontinuously (cf. Figure
9(a, c) ). The Maxwell line has a vertex at (1, 1) (outside the shaded area, the set M(a, b) is a
singleton and therefore the monopolist’s reaction is continuous). Figure 10 reproduces

g, b(P) g, (D)
N/(4a) |- —
N/(4a)= |__ __ _
No/4 | = Nb/4
P .
e
P \ /. \
A\ p —\
0 1 1-»1 0 1 1-b1
2 a-b2 20 a-b2
1 590 b) C 0 S
(a) Case rrake Z (b) Case =2
Ta, b(P)
Nb/d4 |
N/(4a) |- —
7 \
— p
0 1 1-»51
2a a-b2
. (c) C A1 b
(c) Case 1a < b

FIGURE 9
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Figure 8 with the addition of the Maxwell line. Furthermore, we have denoted the profit
maximizing price by p* (thus p* (a, b) = M(a, b) when the latter is a singleton, i.e. at points
not on the Maxwell line). Consider the three paths in Figure 10, all satisfying condition (15)
(demand continuously decreasing over time due to a reduction in consumers’ income
which affects the rich proportionately more than the poor).

Along path (1) in Figure 10 the monopolist reacts discontinuously to the decrease in
demand: at first he does not change his price (p* = 1/2) and then he suddenly adjusts his
price downward discontinuously (when the Maxwell line is crossed) and from then on
follows with a continuous reduction in price over time.

Path (2) in Figure 10 has the surprising feature that, although demand is constantly
decreasing over time, the monopolist does not react at all: his price remains constant over
time and equal to 1/2.

Path (3) in Figure 10 shows an even more surprising feature: at first the monopolist reacts
to continuous reductions in demand by continuously reducing his price and then,
suddenly, he increases his price discontinuously and maintains a high price from then on.
This behaviour is even more surprising considering the fact that the richer classes are
shrinking at a higher rate than the less rich ones. The reason for this surprising reaction is
that the reduction in demand due to the general (non-uniform) impoverishment of
consumers creates a conflict of policy for the monopolist: the monopolist can either reduce
his price in order to maintain as many of his original customers as possible or he can try to

b
|
|
| b=qa"l
\
\
\ ag, bg)
1 0, 90
bt | ]
‘ ! ) |
i ] (2)
W‘-J[ 1
1NN
I
(1) \J\L,‘LJ Maxwell line
P “=1/(2a) —=L_ | [
0 1 ‘

FIGURE 10
The arrows denote the evolution of demand over time
along three alternative paths (1)-(3)
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maintain a high profit margin, thereby forcing most of his original customers to drop out.
The first policy requires continuous reductions in price and a point comes where the price
has to be set so low that the alternative policy of selling an exclusive good to the smaller and
smaller rich class now becomes more profitable. Hence the discontinuous upward jump in
price. Note that intermediate policies are not profitable: the monopolist’s pricing policy is
polarized between a low price-high output one and a high price-low output one.

V. REMarks AND CONCLUSIONS

In the example given above the demand function Dg p is a continuous but not smooth
function of p. This implies that also the profit function 74 is continuous but not smooth.
We chose this example because of its simplicity. However, the kink in the demand function
occurs at a local minimum of the profit function (see Figure 9) and the minima of the profit
function are irrelevant from our point of view. Therefore we can choose a smooth approxi-
mation of (18) (cf. footnote 10) and obtain the same results. We can then invoke
catastrophe theory to assert that all sufficiently close smooth approximations of (18) would
yield the same qualitative results.

In the example of the preceding Section we only had changes in demand over time. If we
now allow also costs to vary (when the cost function is given by (5) ), then by the classifi-
cation theorem of catastrophe theory we know that the set of optimal pricing policies must
look (locally) like Figure 5 (b or c). It is worth noting, however, that the classification
theorem as stated in Section I11 refers only to two generic parameters, not necessarily a cost
and a demand parameter. Thus we can apply it directly to (a smooth approximation of) the
model of section IV where the parameters are a and b. We can then conclude that the global
shape of M* is equivalent to that of Figure 5(c).

The classification theorem stated in Section III also tells us that a more complicated
behaviour may arise, namely that illustrated in Figure 5(d). Such behaviour could arise, for
example, with a family of three-step density functions, rather than the more simple two-
step functions considered in Section IV. In such a situation, the monopolist would
essentially be facing three classes of consumers: the poor, the moderately well-off and the
rich. As consumers drift from one class to the next, the monopolist might find it optimal to
change his price discontinuously, so as to sell mostly to one of the three classes."

Without the classification theorem of catastrophe theory — in particular that part which
tells us that the discontinuities arise generically and are structurally stable —the example of
section 1V would be less interesting. Catastrophe theory, however, justifies the claim that
situations of this sort are not unlikely and, if they occur, they do so in a structurally stable
way, that is, they cannot be eliminated by changing the spccification of the model slightly.

“The case of Figure 5(d) is best understood as a section of the butterfly catastrophe. For more details.
see Bonanno and Zeeman (1986).
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APPENDIX

One way of thinking about the model of Section Il is as follows. Suppose the incomes of the monopo-
list’s potential customers lie in the range (O, E] and let

f*:[0,E]-R (i)
be the density function of income with corresponding c.d.f. given by
F* . [0. E] - [0, 1] (ii)

where

Fx(y) = f*(u)du (iii)

Assume that each consumer is willing to spend at most a fraction s € [0, 1] of her income on the
good (s does not vary across consumers). Thus a consumer with income y has a reservation price for
the good equal to sy, that is, she will buy the good if and only if the price is less than sy. Normalize
income so that sE = 1. Let

fF:[0,1] =R (iv)
be defined by

f(p) = (1/s)f*(p/s) (v)
and

F(p) = F*(p/s) (vi)

Then (v) and (vi) correspond to (1) and (2).

The following situation, based on Gabszewicz and Thisse (1979), provides a concrete example.
Consumers have identical preferences but different incomes. Let / = {1, 2, . . ., N} be the set of
consumers ordered accordingto increasing income. Thus consumer j+1 is richer than consumerj. The
income of consumer j is denoted by y(j). If consumer j does not buy the product, her utility is given by

U0.y(7)) =Uoy(), Up>0 (vii)
while if she buys one unit of the product at price p, her utility is given by
UL, y(H-p) = U1 [y() - p}, U1 > Up (viii)

Then the reservation price of consumer j, denoted by r(j), is that number which solves the following
equation with respect to p: .

U0. y()) = U1, y(j) - p) (ix)

Thus. using (vii) and (viii),
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r(j) = s y(j) (x)

where
0<s=(Uj-Uy/Us <1 (xi)

Then (after a normalization of income which ensures that sy(N) = 1) for each p € [0, 1]
F(p) = =lje] / v(j) < p/st (1/N) (xii)

(where #A denotes the number of elements in the set A). If the number of consumers is very large. the
step function F(p) can be approximated by a continuous function (then f = F' almost everywhere).
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