Agreeing to disagree: a survey

Giacomo Bonanno
and

Klaus Nehring

Department of Economics,
University of California,
Davis, CA 95616-8578  USA

E-mail: gfbonanno@ucdavis.edu
kdnehring@ucdavis.edu

May 1997. Revised, September 1997

Paper prepared for an invited lecture at the Workshop on Bounded Rationality and
Economic Modeling, Firenze, July 1 and 2, 1997 (Interuniversity Centre for Game Theory
and Applications and Centre for Ethics, Law and Economics)



1. Introduction

Aumann (1976) put forward a formal definition of common knowledge and used it to
prove that two “like minded” individuals cannot “agree to disagree” in the following sense. If
they start from a common prior and update the probability of an event E (using Bayes’ rule) on
the basis of private information then it cannot be common knowledge between them that
individual 1 assigns probability p to E and individual 2 assigns probability q to E wité. pn
other words, if their posteriors of event E are common knowledge then they must coincide. This
celebrated result captures the intuition that the fact that somebody else has a different opinion
from yours is an important piece of information which should induce you to revise your own

opinion. This process of revision will continue until consensus is reached.

Aumann’s original result has given rise to a large literature on the topic, which we review
in this paper. We shall base our exposition on the distinction between Bayesian (or quantitative)

versions and non-Bayesian (or qualitative) versions of the notion of agreeing to disagree.

2. lllustration of the logic of agreeing to disagree

Imagine two scientists who agree on everything. They agree that the true law of Nature
must be one of seven, call them, v, d, €, {, n. They also agree on the relative likelihood of

these possibilities, which they take to be as illustrated in Figure 1:
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Experiments can be conducted to learn more. An experiment leads to a partition of the above set.
For example, if the true law of Naturedisand you performed experiment 1 then you would

learn that it cannot b&or € or { or n but you still would not know which is the true law of

Nature among the remaining ones. Suppose that the scientists agree that Scidhpstfbnm
experiment 1 and Scientist 2 will perform experiment 2. They also agrematiftaexperiment

would lead to a partition of the states as illustrated in Figure 2:
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Suppose that they are interested in establishing the truth of a proposition that is represented by

the event E =4,vY, d, €}. Initially they agree that the probability that E is true is (cf. Figure 1):

P(E) = P) + P§) + PQ®) + PE) :3_421 = 75%
Before they perform the experiments they also realize that, depending on what the true law of
Nature is, after the experiment they will have an updated probability of event E conditional on
what the experiment has revealed. For example, they agree that if one performs Experiment 1
and the true state [5(so that E is actually false) then the experiment will yield the information
| ={a, B, y} and Bayesian updating (which they agree to be the correct way to update

probabilities) will lead to the following new probability of event E:
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Similarly for every other possibility. Thus we can attach to every cell of each experiment a new

updated probability of E, as illustrated in Figure 3.

Note the interesting fact that sometimes experiments, although informative (they reduce uncertainty), might
actually induce one to become more confident of the truth of something that is false: in this case one increases
one’s subjective probability that E is true from 75% to 86%, although E is actually false! (Recall that we have
assumed that the true stat@.is



Experiment 1:

Prob(E) = 12/14 Prob(E) = 12/14 Prob(E) =0
[ o [ o [ [ o
a B y ) 3 ¢ n
E={q,v, 9, ¢}

Experiment 2:
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Figure 3

Suppose now that each scientist goes to her laboratory and performs the respective
experiment (Scientist 1 Experiment 1 and Scientist 2 ExperimeAs2)mealsothat the true
state of Nature is¢. Afterwards they exchange e-mail messages informing each other of their
new subjective estimates of event E. Scientist 1 says that she now attaches probability 12/14 to
E, while Scientist 2 says that she attaches probability 15/21 to E. So their estimates disagree (not
surprisingly, since they have performed different experiments and obtained different
information). Should they be happy with these estimates? Obviously not. Consider Scientist 2.
She learns that Scientist 1 has a new updated probability of 12/14. From this she can deduce that
the true state isot n (had the true state begrshe would have been communicated by Scientist

1 an updated probability of E of.Bhe can thus revise her knowledge by eliminatirigom her



information set. Then she will need to re-compute the probability of E as shown in the following
figure. Similarly, Scientist 1 learns that the true state canndt fience revises her information

partition and estimate of E as illustrated in Figure 4.
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Now they inform each other of their new subjective estimates: 7/9 for Scientist 1 and 15/17 for
Scientist 2. Again, there is disagreement. Should they accept such disagreement? The answer is,
again, No. Scientist 1 does not learn anything from the new estimate of Scientist 2, but Scientist
2 does learn something, namely that the state cannpotHsnce she will revise her information

partition and estimate of the probability of E, as illustrated in Figure 5:
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Notice that at this stage they finally agree on the probability of E and indeed it becomes common
knowledge that both estimate this probability to be 7/9 = 78% (before the experiments the ex
ante probability of E was 24/32 = 75%; note that with the experiments and the exchange of

information they have gone further from the truth!).

Notice that before the last step (leading to it being common knowledge that P(E) = 7/9 for
both scientists) it was not common knowledge between the two what probability each scientist
attached to E. When one scientist announced his subjective estimate, the other scientist found
that announcement informative and revised her own estimate accordingly. At the end of the
process of exchanges, the announcement by one scientist of his estimate did not make the other
scientist change her estimate. In a sense further announcements became pointless, occasioned no

surprise, revealed nothing new



Although this example suggests that the scientists will end up with exactly the same

information, this is not true in general.

3. Formal statement of Aumann’s result

In this section we provide a formal and precise statement of Aumann’s (1976)-result
known as theAgreement Theorem which was proved within the context of knowledge and
common knowledge. Extensions of the result to the more general case of belief and common

belief will be examined in Sections 5-7.

Let Q be a set of states. There are two individuals and suppose that they start with the

same prior probability distributionn : Q - [0,1] on Q ( define, for every H1 Q, W(E) =

Zu(w)). Individual i receives private information (the nature of the private information is
wlE

common knowledge between the two) according to the information paditibior every state
w0 Q, 1(«) denotes the cell of i's partition that contamsAssume that, for everyli {1, 2}

andwO Q, u(l.(«y) # 0.

The knowledge operator of individual i, K2 . 29, is defined by K = {w0 Q:
|.(e) O E}. The common knowledge operatoy 10? ., 2%is defined by:

K.E=KEnKEnKKENKKENKKKENKKKEN ..

That is, an event E is common knowledge between the two if both know E, both know that both

know E, etcad infinitum LetI, be the meet (finest common coarsening) of the partitipasd
I, and denote by,(c) the cell of I, that containga Aumann (1976) proved that, for every event

E, KE={wD0Q: I,(0) OE}.



Fix an event E and ldt 1 (E) =all ={ w0 Q: u(E | (&) =a}.” Thatis,|| u(E) =al| is
the event that individual i's posterior probability of Eas In the example of the previous

section, for Scientist 2 we have that after the experiment and before any exchange of
information with the other scientist || (E) = £ || = {a, B, &}, where E 5 a, y, &, &}.

Aumann’s Agreement Theorem. LetQ be a set of states and suppose that two
individuals 1 and 2 have the same prior probability distribufion@ - [0,1] onQ sartisfying
the property that for everyd {1, 2} and w0 Q, u(l.(«)) # 0. Let E be an event and let

a,l][0,1]. Suppose that at some staté is common knowledge that individual 1’s posterior
probability of E (given his information af) isa and 2’s posterior probability of E (given her
information atw) is b. Thena = b. In other words, individuals who start with the same prior

cannot agree to disagre€ormally,

it K.l =all o ll5E) =bl)#0 thena=b.

The theorem is a consequence of the following lemma.

LEMMA 1. Fix an arbitrary event F and let {P.., P } be a partition of F (thus F = I
.0 P_and any two JPand P with j # k are non-empty and disjoint). Suppose {i( | FJ?) = a
forallj=1, .., m. Them(E | F) =a.

HE NP
== ¢

k(P
U(E n Pj) = au(Pj). Adding over j, the LHS becomegE n F) and the RHS becomegu(F) (by

Proof of Lemma 1u(E | Pj) = . Hence, sincau(E | FJ?) = a, we havehat

ME N F) _a

definition of probability measure). Heng€E | F)= G

? For every E, 10 Q such thatu(l) # 0, u(E|l) is the conditional probability of E given |, defined by
uEm = HEND,
u(l)



Proof of the Agreement Theorebet I, () be the cell of the common knowledge
partition containinga Consider individual 1.,(c) is a union of cells of , the information

partition of individual 1. On each such cell 1's conditional probability ofd& By Lemma 1,
U(E | L(w) =a. A similar reasoning for individual 2 leadsg¢E | I.(«)) =b. Hencea=Db. &

4. Bayesian extensions of Aumann’s result

Aumann’s Agreement theorem has been extended in several directions. In this section we

consider probabilistic or “Bayesian” extensions.

I. From events to expectations of random variable®\umann’s result can be

extended from the probability of an event to the expectation of a random variable. In particular,
the following extensions were proved by Milgrom and Stokey (1982), Sebenius and
Geanakoplos (1983), Rubinstein and Wolinski (1990).

1. Let f be arandom variable of? anda andb two distinct numbers. Then there is wat

which it is common knowledge that, conditional on her information, individual 1 believes

that the expectation of isa and, conditional on his information, 2 believes that the

... 3
expectation i®.

2. Let f be arandom variable o2 anda a number. Then there is m@at which it is common

knowledge that, conditional on her information, individual 1 believes that the expectation of

3 . . . - .
Note that Aumann’s result is a special case of this:ftekée the characteristic function of event E.
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f is greater than or equal @&and, conditional on his information, 2 believes that the

. 4
expectation is less than

The latter result can be interpreted as saying that it cannot be common knowledge
between two risk-neutral individuals they both expect to profit from a bet: téce to b¢ the
payment from individual 1 to individual 2, if positive, and from 2 to 1, if negative, in case the
true state turns out to lme. If it is common knowledge that they both expect to gain from the

bet, then it is common knowledge that for 1 the expectatioh iefpositive and for 2 the

expectation off is negative (the expectation of f is positive).

II. “No trade” theorems. Along these lines, Milgrom (1981) and Milgrom Stokey

(1982) proved a result which is often interpreted as establishing the impossibility of speculative
trade. Assume that two traders agree on an ex ante efficient allocation of goods. Then, after the
traders get new information, there is no transaction with the property that it is common

knowledge that both traders are willing to carry it out.

Morris (1994) explores further this “no trade” result, byoking at the case of
heterogeneougrior beliefs. He shows how different notions of efficiency under asymmetric
information (ex ante, ex interim and ex post) are related to agents’ prior beliefs. These efficiency
results are used to obtain necessary and sufficient conditions on agents’ beliefs for no trade

theorems in different environments.

[Il. From probabilities of events to aggregates.In many economic settings,

instead of assuming that individual opinions (conditional probabilities or expectations) are

! Note, however, that it is possible that at a staieis common knowledge that for individual 1 the expectation of
f isaand for individual 2 it is different froma. For example, leR2 = {a, 3}, ]1 ={Q} and ]2 ={{a}, { B}

Let u(a) = u(B) = % and f(a) =1, f(B)=3. Then aix is it common knowledge that for 2 the expectatiorf of
is 2 and for 1 it is different from 2 (it is either 1 or 3).

11



common knowledge, it is more natural to suppose that only saygeegateof individual
opinions (e.g., a price) becomes common knowledge. In this context McKelvey and Page (1986)
proved that if a stochastically monotosneggregate of individual conditional probabilities is
common knowledge, then it is still true that all the conditional probabilities must be equal.
Nielsenet al (1990) show that also this resttlike Aumann’s result- can be extended from

conditional probabilities of an event to conditional expectations of a random variable.

IV. Communication and common knowledge. One way in which common
knowledge can be achieved is through communication. Suppose that the state space is finite. If
the agents communicate to each other the probability of an event (or the expectation of a random
variable, etc.) and revise their information partitions and subjective estimates accordingly, then a
time will be reached after which communication induces no further revision. Then at that time it
will become common knowledge at every state that each agent can predict the opinion she will
hear from the other agent in the future. Then, by Aumann’s theorem, at that time the opinions
must be the same. This “convergence to common knowledge” theorem was proved by

Geanakoplos and Polemarchakis (1982) and Sebenius and Geanakoplos (1983).

Along the same lines, Parikh and Krasucki (1990) consider communication protocols
among more than two individuals in which values of functions are communipatedely
throughmessageswhen agent A communicates with agent B, other agents are not informed
about the content of the message. They show that the agents may fail to reach agreement even

with reasonable protocols. Krasucki (1996) takes this line of inquiry a step further by identifying

n
® A function @: R - Ris stochastically monotoné it can be written in the forng(x , ..., x) = @ (x)) + ... +
@ (x ) where eaclp: R — R is strictly increasing (this definition differs from, but is equivalent to, the one used
by McKelvey and Page, 1986).

12



restrictions on protocols which guarantee that agreement is reached. Heifetz (1996) clarifies the

relationship between consensus and common knowledge in this context.

V. Errors in information processing. Geanakoplos (1989) and Samet (1990)
extend Aumann’s (1976) result in a different direction. They ask what conditions on the
individuals’ information functions (or “possibility correspondences”) are sufficient for the
impossibility of agreeing to disagree. They assume the existence of a common prior and consider
posterior beliefs obtained by updating the common prior nom-partitional possibility
correspondences which represent how individuals process information. In particular, Samet
generalizes Aumann’s result from the case where the information function of each individual is
reflexive and euclidean (and hence transitive) to the case where it is reflexive and transitive. In
other words, he drops the Negative Introspection axiom for individual beliefs (see Section 7).
Thus he takes a “bounded rationality” approach. Geanakoplos (1989) also focuses on
“environments where information processing is subject to error” and finds even weaker
conditions on individual beliefs that ensure the absence of speculation and of “agreement to
disagree”? Geanakoplos, however, goes a step further by providing also a necessary condition,

which he calls “positive balancedness”.

Like Samet, he assumes reflexivity of the information functions, but replaces transitivity with a property which he
calls “(positive) balancedness”. Thus the Truth Axiom (that is, reflexivity of the information function of each
individual) plays a crucial role in Geanakoplos’ and Samet’s analysis.

13



5. Non-Bayesian or “Qualitative” generalizations of Aumann’s
result

Cave (1983) and Bacharach (1985) extended Aumann’s result from the Bayesian setting
(that is, from the conditional probability of an event given a common prior) to the case of like-
minded individuals who follow a common decision procedure that satisfies the Sure Thing
Principle. Roughly speaking, they showed that once two like-minded agents reach common
knowledge of the actions each of them intends to perform, they will perform identical actions.

This is illustrated in the following story, which Aumann (1989) attributes to Bacharach.

A murder has been committed. To increase the chances of a conviction, the
chief of police puts two detectives on the case, with strict instructions to work
independently and exchange no information. The two, Alice and Bob, went to
the same police school so given the same clues, they would reach the same
conclusions. But as they will work independently, they will, presumably, not
get the same clues. At the end of thirty days, each is to decide whom to arrest
(possibly nobody). On the night before the thirtieth day, they happen to meet in
the locker room at headquarters, and get to talking about the case. True to their
instructions, they exchange no substantive information, no clues, but both are
self-confident individuals, and feel that there is no harm in telling each other
whom they plan to arrest. Thus when they leave the locker room, it is common
knowledge between them whom Alice will arrest, and it is common knowledge
between them whom Bob will arrest. Conclusion: They arrest the same people;
and this, in spite of knowing nothing about each other’s clues.

Let Q be a set of states and denote %yhb set of events. Let A be a finite setofions.

A decision procedurés a function D : 20 - A The interpretation is that the decision
procedure D recommends action O{)A to an individual whose information (the set of states

he considers possible) is I. What one learns in police school is a decision procedure: if you know

such and such, then you should do so and so. The decision proceduQr‘eﬂm A satisfies the

Sure Thing Principleif and only if, for every event E, for every partition {P.., P } of E and

everya [l A,

D(P) =afor everyi=1,..m, implies D(E)&

14



Intuitively, suppose that if you knew which of the mutually exclusive evertagpened, you
would choose actioa (which is the same for all)? Then you will take the same actiarnf you
only know that some.fappened, without knowing which one. Thus if Alice would arrest the

butler if a certain blood stain is of type A, B, AB, or O, (perhaps for different reasons in each
case), then she should arrest the butler without bothering to send the stain to the police

laboratory.

Given decision procedure D and individuals i = 1,2 with information partifiothafine
action functionsl : Q - A by d(w) = D(I.(w); in words, dc) is i's action at statex For every

alJA, we write|| d. = al| for the event 0Q : d(w) = a}.

Generalized Agreement TheorenfCave, 1983, Bacharach, 1985). Consider two

individuals who follow the same decision procedure, which satisfies the Sure Thing Principle. If,
at some state, it is common knowledge that individual 1 plans to take ae@hindividual 2

plans to take actiob, then they must be planning to take the same action. Formally.

if K*<

|d,=all nlld,=bll)#0 then a=b.

REMARK. Aumann’s Agreement Theorem is a corollary of the above: for a fixed event

E, define the decision procedurg by D(F) =u(E | F). By Lemma 1 of Section 3, this decision

procedure satisfies the Sure Thing Principle. (Similarly, the expectation of a random variable

satisfies the Sure Thing Principle.)

Moses and Nachum (1990) point out that Bacharach’s technical definition of the Sure
Thing Principle is considerably stronger than is suggested by the blood type example given
above. Indeed, “it requires the decision procedure to be defined in a manner satisfying certain
consistency properties at what amount to impossible situations” (Moses and Nachum, 1990, p.
152). They provide the following “counterexample” to the Generalized Agreement Theorem. A
murder was committed and it is known that one of three suspects, A, B and C is the culprit. Two
police officers are put on the case and are instructed to act independently and adhere to the

following decision procedure:

15



1. If you know who the culprit is, indict him;

2. If you know that exactly one of themnst the culprit, of the other two arrest (for

further interrogation) the one who comes first in alphabetical order;
3. If you cannot rule out any of the three as the culprit, do not arrest anybody.

This could be expressed formally as follows. For evérfA, B, C} let i denote the state where
individual i is the one who committed the murder. Then, for example, {A} represents the state of
information of a detective who has established that A is the culprit, and {B, C} is the state of
information of a detective who has established only that A is not the culprit. Then the above
decision procedure can be expressed as follows:

1. D({A}) = indict A, D({B}) = indict B, D({C}) = indict C;
2. DA, B}) =D({A, C}) = arrest A, D({B, C}) = arrest B;
3. D({A, B, C}) = do not arrest anybody.

This decision procedure satisfies the Sure Thing Principle trivially. Now imagine that detective
Maigret has not collected any clues, while detective Columbo has established that (and only that)
C is not the culprit. Columbo therefore initially intends to suggest that A be arrested, while
Maigret would suggest that no arrest be made. Columbo communicates his intentions to Maigret,
but Maigret cannot use this information to rule out any suspects and therefore insists on
suggesting that no arrest be made. In the end it becomes common knowledge between them that
Columbo intends to arrest A, while Maigret intends to suggest that no arrest be made. Hence they
agree to disagree. The situation after their initial communication of intentions can be represented
using a state spac2that contains four points, 8, y andd. At botha andy suspect A is the

murderer, apf the murderer is B, and atthe murderer is C. Columbo’s information partition is

{ a, B}, { a, } while Maigret’s information partition is {2}.This is illustrated in Figure 6.

16



A B A C

did did did did
it it it it
COLUMBO ® ® ® ®
a B % o)
MAIGRET ® o ® ®
a B % o)
Figure 6

By the above decision procedure, B{g}) = D({ y,d}) = “arrest A” and D) = “no arrest”, thus
violating Bacharach’s Sure Thing Principle. Moses and Nachum point out that Bacharach’s Sure
Thing Principle in this case does not capture the intuition which is normally associated with it.
Indeed, it makes no sense for Columbo to ask himself what he would do if he had Maigret’s
information, for the following reason. Maigret’s information is that (1) either Columbo knows

that C is not guilty or Columbo knows that B is not guilty, (2) he (Maigret) considers it possible
that C is guilty and considers it possible that B is guilty. If Columbo were to know what Maigret
knows (if he had the information Maigret has) then he would find himself believing

contradictory propositions. Formally, let E &,{8} and suppose that the true staterisThen

a UK, (K.E UK E) anda U =K ,E n =K ,=E. For Columbo to be in the same state of
information ata as Maigret, it would have to be true tioat] K (K_E Ul K ~E) anda U -K_E
n =K E. By Negative IntrospectiomK E Ll K ~K_E and=-K ~E U K_-~K_~E. Thus
a0KAKE nKAKAE=K(-KE n=K-E)=K~(KEDK-E). Thusa OKF n
K F, where F = KE [J K_~E, contradicting consistency of knowledge. As Moses and

Nachum (1990, p. 156) point out, “taking the union of states of knowledge in which an agent has
differing knowledge does not result in a state of knowledge in which the agent is more ignorant;

it simply does not result in a state of knowledge at all!”.

17



Moses and Nachum'’s criticism of Bacharach’s Sure Thing Principle is similar to Gul's
(1996) and Dekel and Gul's (1997) criticism of the notion of a common prior in situations of

incomplete information (see Section 6).

In their paper, Moses and Nachum go on to propose a weakening of the Sure Thing
Principle and find conditions under which the weaker notion yields the impossibility of agreeing

to disagree.

6. Common Prior and Agreement in situations of incomplete
information.

The assumption of a common prior is central to Aumann’s result on agreeing to disagree
and related results, such as the no-trade theorem (Milgrom and Stokey, 1982). The Common
Prior Assumption (CPA) plays an important role also in game theory: it is the basic assumption
behind decision-theoretic justifications of equilibrium reasoning in games (Aumann, 1987,

Aumann and Brandenburger, 1955\)ot surprisingly, the CPA has attracted its share of

criticism. In models oasymmetric informationwhere there is agx antestage at which the
individuals have identical information and subsequently update their beliefs in response to
private signals), the controversy focuses on the plausibility or appropriateness of assuming
commonnessf the prior beliefs (see Morris, 1995). In this section we want to focus on situations
of incomplete informationwherethere is naex antestage and where the primitives of the model
are the individuals’ beliefs about the external world (their first-order beliefs), their beliefs about
the other individuals’ beliefs (second-order beliefs), etc., i.e. their hierarchies of beliefs. In this
context, the CPA is a mathematical property whose conceptual content is not clear. This has
given rise to a novel and, in a way, more radical, criticism of the CPA, one that questions its very
meaningfulnes situations of incomplete information (Dekel and Gul, 1997, Gul, 1996,

Lipman, 1995).

For an introduction to the epistemic foundations of solution concepts in game theory see Bonanno and Nehring
(1997c).

18



The skepticism concerning the CPA in situations of incomplete information can be
developed along the following lines. As Mertens and Zamir (1985) showed in their classic paper,
the description of the “actual world” in terms of belief hierarchies generates a collection of
“possible worlds”, one of which is the actual world. This set of possible worlds, or states, gives
rise to a formal similarity between situations of asymmetric information and those of incomplete
information. However, while a state in the former represents a real contingency, in the latter it is
“a fictitious construct, used to clarify our understanding of the real world” (Lipman, 1995, p.2),

“a notational device for representing the profile of infinite hierarchies of beliefs” (Gul, 1996, p.
3). As aresult, notions such as that of a common prior, “seem to be based on giving the
artificially constructed states more meaning than they have” (Dekel and Gul, 1997, p.42). Thus
an essential step in providing a justification for, say, correlated equilibrium under incomplete
information is to provide an interpretation of the “common prior” based on “assumptions that do
not refer to the constructed state space, but rather are assumed to hold in the true state”, that is,
assumptions “that only use the artificially constructed states the way they originadedely as

elements in a hierarchy of belief” (Dekel and Gul, 1997, p.116).

When the beliefs of the individuals can be vievasdfthey were obtained by updating a
common prior on some information, they are caleaisanyiconsistentHarsanyi consistency is
a well-defined mathematical property, but, due to the “artificial nature” of the states in situations
of incomplete information, “we do not know what it is that we would be accepting if we were to

accept the common prior assumption” (Gul, 1996, p.5).

In this section we show that the existence of a common prior can be understood as a
generalized form of Agreement, which we call Comprehensive Agreement. In order to motivate
this notion, we take as point of departure the observation that, in some special cases, it is easy to
find an interpretation of Harsanyi consistency that does not invole& antestage. In
particular, in situations afompleteinformation (characterized by the fact that the beliefs of each
individual are commonly known) Harsanyi consistency amounts to identity of beliefs across
individuals. It thus seems natural, in situationgwodbmpleteinformation, to think of Harsanyi
consistency as likewise amounting to equality of thasgeectof beliefsthat are commonly
known For instance, one can take as an aspect of beliefs the subjective probability of an event E,
in which case Agreement reduces to the notion introduced by Aumann (1976). Subjective
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probabilities of events are rather special aspects of beliefs and are not rich enough to fully
capture the conceptual content of Harsanyi consistency. Thus one needs a more general notion of
Comprehensive Agreemeat the absence ahy “agreement to disagree” about aspects of

beliefs (or belief indices) in an appropriately defined general class.

In general situations of incomplete information where some individuals might have false
beliefs (i.e. in non-partitional models), the relationship between Comprehensive Agreement and
the existence of a common prior is somewhat complex. To see this, consider the following
example, illustrated in Figure 7. Individual 2 is an economist who knows the correct spelling of
his name (Mas-Colell). Individual 1 mistakenly believes that the spelling is Mas-Collel. She even
believes this spelling to be common belief between them. These beliefs are represented by state

in Figure 7. Note, in particular, that 1's mistaken beliefs are represented with the help of an

P . . . 8
“artificial state” 8 which she believes to obtain for sure &ence the arrow fromto ) .

spelling: spelling:
Mas-Colell Mas-Collel

1: —{)
T B
2: () (¢
Figure 7

In this example Comprehensive Agreement is satisfied at the true &aid also af). To see

this, think of abelief indexpr aspect of belief, as a function whose domain is the set of
probability distributions over, 8}. Let f be any such belief index. Then individual 1’s value of
f is (the same, hence) common belief at every state, in particulaCatl this valuec. Now,

individual 2’s value of at 8 must also be& (since they have the same beliefs there). Thus if 2's
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index is common belief atit must bex. Hence atr (and atf), there cannot be agreement to

disagree (i.e. commonly known disagreement) about the aspect of beliefs captdired by

Are the beliefs represented by staia Figure 7 Harsanyi consistent? This question
requires clarification, since in an incomplete information setting properties need to be stated
locally as pertaining to a particular profile of belief hierarchiesepresented by the true state
T — rather than globally as pertaining to the model as a whole. In a weak sense the question can
be answered affirmatively: the true stateould be thought of as tlex interimstage of an
asymmetric information model with a common prior that assigns probability Grid
probability 1 tof. We define a corresponding weak notion of the CRar¢anyi Quasi
Consistencly which in Figure 7 is satisfied atand in Proposition 1 below we show it to be
equivalent to Comprehensive Agreement. However, Harsanyi Quasi Consistency allows the
“common prior” to give zero probability to the true state eveeviéryindividual assigns
positive probability to it (see Figure 9). In such a case the true beliefs are compatible with the
common prior largely due to the lack of restrictions associated with updating on zero probability
events. As a result, the beliefs at the true state may be accounted for only incompletely by the
common prior. A considerably stronger noti@trbngHarsanyi Consistengyequires the
common prior to assign positive probability to the true state (in Figure 7, this requirement is not
met). In Proposition 2 we provide the following characterization: Strong Harsanyi Consistency is
equivalent to the conjunction of Comprehensive Agreement, “Dfutommon belief” (what is
actually commonly believed is true) and common belief in “Taltbutcommon belief” (if
somebody believes that E is commonly believed, then E is indeed commonly believed).

Requiring the “prior” to assign positive probability to the true state (that is, requiring
Strong Harsanyi Consistency) is what is needed in order to translate to situations of incomplete
information probability 1 results based on the Common Prior Assumption obtained in an
asymmetric information context, such as Aumann’s (1987) characterization of correlated
equilibrium (see Bonanno and Nehring, 1997c).

® The statg3 is definedas the following conjunction of facts about the world and individuals’ beliefs: “the correct
spelling is MasCollel and it is commonly (and correctly) believed to be MasCollel”. For more details on the
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9,
We now turn to the formal analysis.

DEFINITION 1. AninteractiveBayesian fram¢or Bayesian frame, for sholr%)s a

tuple

B =(N, Q, 1 {p}

where

e N={1, ..., n}is afinite set oihdividuals

* Q is afinite set ostateg(or possible worlds])l. The subsets of2 are calledevents.
e 70Q isthe “true” or “actual” staté.

* for every individual ON, p.: Q - A(Q) (whereA(Q2) denotes the set of probability

distributions overQ) is a function that specifies herobabilistic beliefssatisfying the

following property [we use the notation prather than a)]: Ua, BUQ,

if pi,a(ﬁ) >0 then B=P, (2)

Thus p. ,UA(Q) is individual i's subjective probability distribution at stat@nd condition

(1) says that every individual knows her own beliefs. We denotigby p || the event

{wOQ:p_=p,} ltisclearthatthe s¢tlp =p |l : w0 Q} is a partition of; it is

often referred to as individual i'§ype partition

“state space” representation of belief hierarchies, see below.
® For a more detailed introduction to the semantics of belief and common belief see Bonanno and Nehring (1997b).

10 For a similar definition see, for example, Aumann and Brandenburger (1995), Dekel and Gul (1997) and
Stalnaker (1994, 1996).

H Finiteness of2 is a common assumption in the literature (cf. Aumann, 1987, Aumann and Brandenburger, 1995,
Dekel and Gul, 1997, Morris, 1994, Stalnaker, 1994, 1996).

a We have included the true state in the definition of an interactive Bayesian model in order to stress the
interpretation of the model as a representation of a particular profile of hierarchies of beliefs.
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Given a Bayesian mod#, its qualitative interactive belief fram@r frame, for shortjs

the tuple@ = (N, Q, 7, {P}, ) where N,Q, andr are as in Definition 1 and

* for every individual N, P :Q - \D isis possibility correspondencéerived from i's

probabilistic beliefs as follows?

P(a) = supp(p,).

Thus, for everyrl1Q, P(a) is the set of states that individual i considers possitde at

REMARK 1. It follows from condition (1) of Definition 1 that the possibility
correspondence of every individual i satisfies the following properties (whose interpretation is
given in Footnote 16)Ja,B0Q,

Seriality (or non-empty-valuedness P(a) #[J,
Transitivity: if B0 P(a) then HP) U P(a),

Euclideanness: if B0 P(a) then Ha) U P(p).

REMARK 2 (Graphical representation). A non-empty-valued and transitive
possibility correspondence R - 2% can be uniquely represented (see Figures 6-10) as an
asymmetric directed gra|104hNhose vertex set consists of disjoint events (cakdid and
represented as rounded rectangles) and states (represented as points), and each arrow goes from,
or points to, either a cell or a state that does not belong to a cell. In such a directed graph,
w O P(w if and only if eitherwand«w’ belong to the same cell or there is an arrow fegrar
the cell containingy, to w, or the cell containingy. Conversely, given a transitive directed

graph in the above class such that each state either belongs to a cell or has an arrow out of it,

2 UOA(Q), suppfi) denotes the support gf, that is, the set of states that are assigned positive probabifity by

14 . . .. . .
A directed graph iassymmetridf, whenever there is an arrow from vertex v to vertethen there is no arrow
from V to v.

23



there exists a unique non-empty-valued, transitive possibility correspondence which is
represented by the directed graph.

The possibility correspondence is euclidean if and only if all arrows connect states to cells and
no state is connected by an arrow to more than one cell (for an example of a non-euclidean

possibility correspondence see the common possibility correspondeotEigure 8 below).

Finally, if — in addition— the possibility correspondence is reflexive, then one obtains a
partition model where each state is contained in a cell and there are no arrows between cells (as

is the case, for example, in Figure 6).

Given a frame and an individual i, telief operatorB, : 2% _, 2% is defined as follows:

DEDQ, BE ={wlQ : P(w) O E}. BE can be interpreted as the event that (i.e. the set of states

at which) individual ibelieves for sur¢hat event E has occurred (i.e. attaches probability 1 to

E).15

Notice that we have allowed for false beliefs by not assuming reflexivity of the

possibility correspondences @12, a U P(a)), which-as is well known (Chellas, 1984, p.
164) - is equivalent to th&ruth Axiom(if the individual believes E then E is indeed true):

DEDQ BEOE™.

" Thus Condition (1) of Definition 1 can be stated as follawi&IN, Da0Q, [lp =p I =Blp =p_I.

e It is well known (see Chellas, 1984, p. 164) that non-empty-valuedness of the possibility correspondence is
equivalent taonsistencyf beliefs (an individual cannot simultaneously believe E and ndl EYJ Q,
BiE 0= Bi—| E (where, for every event FF denotes the complement of F). Transitivity of the possibility
correspondence is equivalentpmsitive introspectionf beliefs (if the individual believes E then she believes
that she believes EXIE T Q, BE I BBE. Finally, euclideanness of the possibility correspondence is
equivalent tanegative introspectioof beliefs (if the individual does not believe E, then she believes that she
does not believe EJE O Q, - BiE O Bi—| BiE.
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The common belief operator, & defined as follows. First, for every K), let BE =

N B.E, that is, BE is the event that everybody believes E. The event that E is commonly
iCN

believed is defined as the infinite intersection:

B.BE=BE n BBE nBBBE n ..
e e e e e e
The corresponding possibility correspondengcesPhen defined as follows: for evemyi] Q,

P(a)={w0Q:a0-B,~{a}}. Itis well known that Pcan be characterized as ttransitive

closure of |J P, thatis,
iON

Oa,B0Q, BOP.(a) ifand only if there is a sequen@{eil, |m> in N (the

set of individuals) and a sequer{ay%, Ny o nm> in Q (the set of states) such
that: () n,=a, (i) n., =B and (i) for everyk =0, ..., m1, n,,,0P (1)
k+1

Note that, although Hs always non-empty-valued and transitive, in general it need not

be euclidean (despite the fact that the individual possibility correspondences are: for an example

see Figure 8; recall thatcf. Footnote 16- P_ is euclidean if and only if Bsatisfies Negative

Introspection).

To give contents to the beliefs of the individuals, one needs to add to a frame a
specification of the “facts of Nature” that are true at every state. By doing so one olotaidsla
based on the given frame. A state in a model determines, for each individual, her beliefs about
the external world (her first-order beliefs), her beliefs about the other individuals’ beliefs about
the external world (her second-order beliefs), her beliefs about their beliefs about her beliefs (her
third-order beliefs), and so oad infinitum An entire hierarchy of beliefs about beliefs about
beliefs ... about the relevant facts is thus encoded in each state of a model. For example, consider
the following model, which is illustrated in Figure 8 according to the convention established in

T oL
Remark 2N ={1, 2},Q={1, 8y, &, p, . =P, ,= P, 5= N 0 ! Rs= Rp=FR:=
BY 3 3L
Ty oL = = Ty oL Here the eventf, 7,\} represents the proposition
ﬁ 0 0 OE! pzyy p2’5 % O % % E' ﬂ! IW p p p
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“it is sunny” and event§} the proposition “it is cloudy”. The true statedescribes a world
where in fact it is sunny, individual 2 believes that it is sunny and believes that 1 also believes it
is sunny (indeed he believes that this is common belief), but in fact 1 believes that it is sunny

with probability 3 and cloudy with probabilityy and believes that also 2 is uncertain as to

whether it is sunny or cloudy (and attaches equal probability to both), etc.

Conversely, given any profile of infinite hierarchies of beliefs (one for each individual)
satisfying minimal coherency requirements, one can construct an interactive Bayesia®@model
such thatt the true state the beliefs of each individudllN fully capture i's original infinite
hierarchy of beliefs (see Boege and Eisele, 1979, Brandenburger and Dekel, 1993, Mertens and

Zamir, 1985, and Battigalli, 199]77)

sunny sunny sunny cloudy

1: (o]

B 1 y g

B T Y 0

Pilel e re o
Figure 8

It is not obvious what a propkrcal formulation of the existence of a “common prior”

ought to be. Below we suggest two definitions. The first turns out to be equivalent to a

17 . . .
Finiteness of2, however, cannot be guaranteed in general.
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generalized notion of Agreement, but is too weak in some respects. The second, stronger,

definition is more appealing but is no longer equivalent to Agreement.

DEFINITION 2. For everyuA(Q), let HQCH (for Harsanyi Quasi Consistency
with respect to the “priorfi) be the following eventa [ HQCH if and only if

plw)

— if
ullp =pl

«Ollp, = p,Jl and p («) = O otherwise (that is,, pis obtained fromu by

conditioning onl[p, = pl,wll)ls, and

(1) OiDN, DawOP(a), if u(llp, =pJ) >0 then p(w) =

(2)  wuP(a)>0.

If a O HQCH, U is alocal common prior atr. Furthermore, letHQC = UHQCH )

uOA(Q)

We now define formally a general notion of agreement. Agreement as equality of beliefs
is essentially a two-person property. Hence, for the remaining part of this section, we specialize

to the case where N = {1,2}.

Let X be a set with at least two elementelef indexs a functiorf : A(Q) - X ©

EXAMPLE 1. (i) Let ED Q be an arbitrary evenX = [0,1] andf  the following
belief index:f (p) = p(E) ; thug (p_,) is individual i's subjective probability of event E at

Stateaq.

" Note that, for everw( Qandi ON, w0 lIp = p_II. Thusy(ew) > 0 impliesy(ilp. = p_|I) > 0.
¥t may seem that a belief indefx depends on the set of staf2sHowever, this is not so: one should think fof

as being defined on the “universal belief space” (cf. Mertens and Zamir, 1985). Indeed, all that matters is the
restriction of f to P(1).
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(i) LetY :Q - R be arandom variablX =R and f, be the belief index given by

fy (p) = Z}Y(w) pw).; thus f,(p;,)is I's subjective expectation of Y at state

(i) Let A be a set of actionsX = HandU:AxQ - Ra utility function. Define the

belief indexf : A(Q) - 2" as follows: fu,(p) = argE[IlaX Z U(a,w)p(w) . Thusf(p, ) is
a wlQ

the set of actions that maximize individual i's expected utility at state

DEFINITION 3. A belief index isproperif and only if it satisfies the following
property:Up,qA(Q), OxOX, DalJ[o,1],

if f(p)=f(q) =x thenf(ap + (1-a)q) =x.

Let/ _ denote the class of proper belief indices.
It is easily verified that all the belief indices of Example 1 are proper.
Given a proper belief indefx A(Q2) -~ X and an individualliN, definef. : Q - X by

f(a) = f(p,,)- For everyUX denote the evenndQ : f(a) =x} by [If =x]|.

DEFINITION 4. Given a Bayesian model and a proper belief infle&(Q) - X, at
a 0 Q there isAgreement for for f-Agreementif and only if, for alix , x,00X,

a0B.(If, =xll nllf,=xl) O x=x, ).

That is, if ata it is common belief that individual 1's belief indexx'isand individual 2’s index
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. . . . 20
is X,, thenx, =x,. Correspondingly, define the following event:

f-Agree = [ -B. (If,=xll nllf,=x,l). (3).

XXX
X#%

Given a Bayesian model and a $aif proper belief indices, at there isAgreement on

J or J-Agreementif and only if ,0f0J , a O f-Agree. Correspondingly, let

J-Agree = (] f-Agree (4).
fof

A general notion of agreement is given by the entire class of proper belief indices.

DEFINITION 5. LetCA (for Comprehensive Agreement) be the following event:

CA =7 _-Agree.

The following proposition (proved in Bonanno and Nehring, 1996) characterizes

Comprehensive Agreement as equivalent to Harsanyi Quasi Consistency.

PROPOSITION 1. CA = HQC.

The notion of Harsanyi Quasi Consistency is rather weak: it allows the “common prior”
to assign zero probability to the true beliefalbthe individuals (even if none of the individuals

has false beliefs: Example 2) and it is compatible with some individuals believing that there is

agreement to disagree (Example 3).

20 .
Throughout the paper bold-face letters and expressions are used to denote events (&Jbsets of
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EXAMPLE 2. Consider the frame of Figure 9. Let] A(Q) be such that(p) = 1.
ThenHQC“ = Q. Thus atr Harsanyi Quasi Consistency is satisfied even though the type

(beliefs) of each individual is assigned zero probabilitytbiote that ar both individuals
have correct beliefér U P (7) n P(1)).

B y T
P]: @<—' @
B y T
P : OO

Figure 9

EXAMPLE 3. Consider the model of Figure 8. Let] A(Q) be such thau(f) = 1.
ThenHQCH ={1, B}. At T Harsanyi Quasi Consistency is satisfied even though individual 1
believes that he and 2 “agree to disagree” about the probability that it is sunny (that is, 1 believes
that it is common belief that he himself attaches probability 1/3 to the e8enty} while 2
attaches probability 1/2 to it).

In view of the above examples, Harsanyi Quasi Consistency is too weak a notion to allow
the translation to situations of incomplete information of results that are based on the Common
Prior Assumption, such as Aumann’s (1987) characterization of correlated equilibrium. In order
to strengthen the notion of Harsanyi Quasi Consistency one needs to tighten the connection
between the implied prior and the true beliefs/state. The following definition does so by

requiring the prior to assign positive probability to the true state.
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DEFINITION 6. For everyullA(Q), IetSHC“ (for Strong Harsanyi Consistency

with respect to the “priorfi) be the following eventa [ SHCH if and only if

) aDHQCH, and

(2)  u(a)>0.

Furthermore, leBHC = USHCH.

uOA(Q)

To explore the gap betwed#QC and SHC we introduce the following events (;

stands for Trutlaboutcommon beIief,T* stands for Trutlof common belief, whiIeNI* stands

for Negative Introspection of common belief ):

T = (1 (] -(BBEN-BE)
iIN  E2°

T = () ~(B.En ~E)

ED®

*

NI = () (B,EO B-B,E).
ErR®
T captures the notion that individuals are correct in their beliefs about what is commonly

believed:a U T, if and only if, for every event E and individual i, if, @tindividual i believes

B

that E is commonly believed, then, @t E is indeed commonly believed @Gf1B.B,E then
aJB,E). On the other hanaizDT* if and only if ata whatever is commonly believed is true (for

every event E, ibnJB,E thenaDE)Zl. Finally, a [ NI~ if and only if — for every event E-

“ It is straightforward thaﬂDT* if and only if, adll (a). Clearly, Truth of common belief is qualitatively weaker

than Truth; since *Ei'* =Q, T* can be viewed as Truth shorn of any intersubjective implications.
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whenever aix it is not common belief that E, then, @t it is common belief that E is not

. 2
commonly believed’

The following proposition follows from results proved in Bonanno and Nehring (1996,

1997a)

PROPOSITION 2. SHC =HQC nT nBT_ =HQCn T nNI.

7. Qualitative agreement

In this section we show that the qualitative counterpart to Harsanyi Quasi Consistency is
the property of Qualitative Agreementienoted byA. First, letT (for Truth) be the following

event:

T=() ()-(BEn-E

iIN ER®
Thus, for everya [0 Q, a O T if and only if no individual has any false beliefsaatfor every

iN and for every E1Q, if aUBE then aDE)zs. Let A (for Agreement) be the following

event:

A=~ B*—l B*T.

A captures the notion of Agreement on qualitative belief indices, as we now show. Among the
proper belief indices defined in the previous section, of particular interest are the following
special casesimpleindices, which take on only two values, 0 and 1, qudlitative indices,

*

* It is well known thata O NI if and only if P(a) satisfies the following properti 8, yO P.(a), yO P.(B).

z It is well known thataOT if and only if al]ﬂ P(a) - It follows thataUB,T if and only if, for all BUP,(a),

BO(R(B)-

iON
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which depend only on the support ofJ@A(Q2). We denote the first class b@z and the latter by

3@' Thus

J,={f:4@) - X : () £O7F_, (i) X={0 1 and(ii) f*(2) isclosed} (5)

Jo=1 f 07, :0p,q0A(Q), if supp(p) = supp(q) thef(p) =f(q) }. (6)

The following results are proved in Bonanno and Nehring (1996).

PROPOSITION 3. fOJ, if andonly if thereexistsarandomvariableY : Q — R

El if z Y (w)p(w)=0
suchthat for all pOA(Q), f(p) = Ae) .
HO otherwise

REMARK 3. A qualitative belief index can be written as= d o supp, with

d : o - X (such functions d have been studied in Rubinstein and Wolinsky, 1990). A
qualitative belief index is proper if and only if & union consistenthat is,

Om>1, OE,, ..., E02°, 0x0X, if d(E) =xforallk=1, ..., m thed,(J E ) =x. (7)

m
k=1

Note that since the events,E.., E arenot assumed to be pairwise disjoint, union

consistency is a stronger property than the Sure Thing Principle defined by Bacharach (1985).

01 ifsupp(p)d E

Fix an event E£ 0 and consider the following |ndexfE(p) = EO otherwise

Thus, for every individual i and state, f(p.,) = 1 if and only ifa [ BiE24. Let

2 To representf. in the manner of Proposition 3, let YQ - R be as follows: Y :1E— 1, where

lE: Q - {0,1} is the characteristic function of E:LE(w) = 1 if and only if «OE. Hence
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J =1f_:A(Q) - {0,1} : E O Q} (the subscript “S” stands for “simple”). Clearl{, 0 J, n 3@'

S

The following proposition shows that in fadf, coincides with?fQ nd,

PROPOSITION 4. J = J,n J,

Note thata [J ?S-Agree if and only if, for no event &g UJ B,(B.E n =B,E), that is, there

is no event about which the two individuals “agree to disagree™:

JsAgree = (1 (] ()] -B.(BBEn ~BE).

iON  jON  ED@®
LEMMA 1. Da0Q, aOJ-Agree ifand only if

Oij ON, OBOP,(a) such that B) O UJPw).

WP (a)

As a corollary to Lemma 1 we get that Qualitative Agreement rules out agreeing to

disagree about events.

COROLLARY 1. A OJ Agree.

The converse to Corollary 1 does not hold. To see this, consider the frame illustrated in
Figure 10. By Lemma 1f-Agree = Q; on the other handA =0 (in fact, T = {7, B} and,

therefore, BT =0, thus-B,-B,T =0).

V(=00 T@OE Then TY@p@= T Y(@p@ =~y p@) <0 ifand onlyif p) >0 for
0-1 if wOE W2 wFE wFE

somew-E, if and only if z p(w) <1
wlE
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Figure 10

To obtain a full characterization of Qualitative Agreement one needs to consider the

entire class of qualitative belief indices.

PROPOSITION 5. A = 3Q-Agree.

It follows from Proposition 5 and the above example thafgree # 3Q-Agree. Thus,

in contrast to the case of general “quantitative” proper belief indices, for which simplicity can be

assumed without loss of generality (i?g.—Agree: 32-Agree: see Bonanno and Nehring, 1996),

simplicity is a restrictive assumption for qualitative belief indices.
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