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the formal logic of individual beliefs (KD45). In particular, the event
that E is not commonly believed need not be itself commonly believed.
Even more strikingly, whereas individuals always know what they be-
lieve, this is not necessarily so at the "common" level: it may well be
that the agents fail to commonly know what they commonly believe.
Call an intersubjective system of knowledge and belief regular when the
logic of common belief and the relationship between common belief and
common knowledge are the same as for the individuals. In this paper
we characterize regularity in terms of properties of individual beliefs
and study its implications for intersubjective consistency conditions on
beliefs.

Integrated epistemic systems that jointly consider knowledge and
belief have been studied in philosophy (Hintikka, 1962; Lenzen, 1978),
artif icial intell igence and computer science (Halpern, 1991; van der
Hoek, 1993; van der Hoek and Meyer,  1995; Kraus and Lehmann, 1988;
Lamarre and Shoham, 1994), economics and game theory (Battigall i
and Bonanno, 1997; Dekel  and Gul,  L997; Geanakoplos,  1994).  The
philosophy and artificial intelligence literature has dealt mainly with
single-agent systems and the focus has been on the possibility of belief
collapsing into knowledge as the result of plausible-looking axioms. In
game theory a study of systems of knowledge and belief arises naturally
in the context of extensive-form games from the attempt to model a
player's beliefs after she observes an unexpected move of an opponent.
Our work ties in with both l iteratures: as in the former, there is the
possibility of a somewhat surprising collapse of belief into knowledge;
the link to the latter is established by the analysis of the assumption
of common belief in no error (of beliefs) which plays a crucial role in
the justification of backward induction for interesting classes of perfect
information games (cf. Ben-Porath 1997; Stalnaker 1996; Stuart 1997),
and in the interpretation of the Common Prior Assumption under in-
complete information (Bonanno and Nehring, 1998c).

The next section provides a road map of the paper by describing
the specific questions that are asked and the results obtained (a vi-
sual summary is given in Figure 3).BV focusing on very simple yet
qualitatively contrasting examples, it is hoped that this section serves
also the purpose of fleshing out the notions of common belief and com-
mon knowledge to readers only minimally acquainted with the growing
literature on interactive epistemology.

INrpnsu

2 Overvie

The following e:
in the sense th
beliefs.

Example l_ In,
vidual 2, on the
child. He even L
beliefs are repl.:t
represent the kt
lief accessibility
formally in Sect
sition "individui

state a, althoug
believes herself t
not commonly b,
belief ). Thus th<
lief, denoted by
belief operator),
commonly believ
believed (becaus,
where E is not c,
of Common Belir
the common knor

How can one unc
properties of indi
main result (Thec
called Caution at,
about common b,
E to be commonl
lieved, that is, he ,
mistaken in his br
Example 1, indiv
state. Theorem b.
spection of Comn
ness of Common E
about Common B,

Example 2 In th
at state a individt
Iegitimate child, b



articular, the event
:ommonly believed.
rnow what they be-
:vel: it may well be
commonly believe.

ref regular when the
common belief and

luals. In this paper
>f individual beliefs
tency conditions on

Lder knowledge and
962; Lenzen, 1978),
'ern,  1991; van der
rnd Lehmann, 1988;
e theory (Battigalli
rkoplos, 1994). The
r dealt mainly with
possibility of belief

rlooking axioms. In
:lief arises naturally
rttempt to model a
ove of an opponent.
flormer, there is the
lief into knowledge;
s of the assumption
rys a crucial role in
ng classes of perfect
1996; Stuart  1997),

rsumption under in-
i c  l .

)aper by describing
rlts obtained (a vi-
on very simple yet
t this section serves
non belief and com-
ed with the growing

INTSRsUBJECTTvE coNsrslBNcy oF KlowlnocE AND Baur;p / zg

Overview

The following example shows that common belief may be ,,ill-behaved,,

in the sense that it may fail to satisfy the same logic as indiviclual
beliefs.

Example L Individual 7 knows that she is an illegitimate child. lndi-
vidual 2, on the other hand, mistakenly believes that I is a |egitimate
child. He even believes this to be common belief between them. These
beliefs arc rcpresented by state a in Figure 7, where the rectangles
represent the knowledge partitions and the amows represent the be-
lief accessibility relations (common belief and knowledge are defined
formally in Section 3). Let E be the event that represents the propo-
sition "individual 1 is a legitimate child', , that is, E _ {p}. Then, at
state a, although E is not commonly believed (because individuat I
believes herself to be illegitimate), it is not common belief that E is
not commonly believed (due to individual 2,s belief that E is common
belief). Tlius the property of Negative Introspection of Common Be-
lief, denoted by lrllcB FB*E -+ B*-B*8, where B* is the common
belief operator), fails to hold at a. Furthermore, at state p, while E is
commonly believed, it is not common knowledge that it is commoily
believed (because individual 2's knowledge set at 13 contains state a
where E is not commonly believed). Thus the property of Awareness
of common Belief, denoted by AWB (B.E -+ /{* B*8, where 1{* js
the common knowledge operator), fails to hold at 13.

How can one understand the properties of common belief in terms of
properties of individual beliefs? This question is answered by the first
main result (Theorem 5.1) in terms of a condition on individual beliefs
called Caution about Common Belief (CAUCB). An agent is cautious
about common belief at a state if, for any event E,he only believes
E to be commonly believed if he in facl knows E to be commonly be-
lieved, that is, he does not open himself to the "epistemic risk,, of being
mistaken in his belief about what is commonly believed. Note that in
Example 1, individual 2 fails to be cautious in this sense at either
state. Theorem 5.1 shows that common knowledge of Negative Intro-
spection of Common Belief (1{-NICB), common knowledge of Aware-
ness of Common Belief (1{-AwcB) and common knowledge of Caution
about Common Belief fK-CAUcB) are pairwise equivaleirt.

Example 2 In the modification of Example 1 illustrated in Figure 2,
at state a individual 2 still mistakenly believes that individual I is a
Iegitimate child, but no longer believes this to be commonlv believed:
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common
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Figure 1

at state a he consid.ers it possible (accord.ing to his beliefs) that the

true state is B where individual 7 believes herself to be illegitimate'

Here both agents ate cautious about common belief at every state; as

imptied by Theorem 5.7, both l{egative Introspection of commonBelief

and. Awareness of Common Belief are satisfied at every state. (Indeed,

the only event that is commonly believed' at any state is the universal

event so that common belief and common knowledge coincide.)

Example 2 shows that common belief may be well-behaved even in

the case where some individuals believe that others' beliefs are (or

may be) wrong. Theorem 5.2 shows that, gr_ven common knowledge

of caution about common Belief rK-cAUcB), whenever individuals

fail to have common belief in the correctness of each others' beliefs,

this failure must in fact be commonly believed' We refer to this as

Disagreement and. to its complement as Agreemenf. Disagreement is

a severe form of intersubjective inconsistency; in particular, it can be

shown to characterize situations in which agents can make infinitely

profitable bets with each other (see Bonanno and Nehring 1998a')

In Example 2, common belief is not only well-behaved, it even coin-

cides with common knowledge. when does this happen? The answer to

this question is provided in iheorem 5.3 as follows . Let Tc B (for Truth

of Ci,*mon B"ii"y) denote the property that' while some individuals

may have in.orr""t'beliefs, the group is never wrong collect'iuely in the
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sense that whatever is commonly believed is in fact true. Let EQUCB
denote the Equiualence of Common Belief and Common Kno'*^ledge.
Theorem 5.3 asserts the equivalence between common knowledge of
trQu"t and common knowledge of the conjunction of CAUCB and
T C B .

If one adds Agreement to the assumptions of Theorem 5.3, belief
collapses into knowledge for every individual (Theorem 5.4). One thus
encounters an intersubjective version of the "collapse problem" known
from the single-agent l i terature (Hintikka, Ig62; Lenzen, 1978; van der
Hoek, 1993; van der Hoek and Meyer,  1995).  Here,  i t  is  resolved by
reading Theorem 5.4 as follows: if i t is common knowledge that indi-
viduals are cautious about common belief, and if the group is always
correct (whatever is commonly believed is in fact true), then any gap
between belief and knowledge results in disagreement. (This reading
suggests that the assumption of common knowledge of the truth of
common belief is the least plausible.)

In view of the degeneracy uncovered by Theorem 5.4, the two con-
ditions of Theorem 5.2 (Agreement and common knowledge of Caution
about Common Belief) define the strongest plausible integrated inter-
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subjective logic of knowledge and belief.
Figure 3 contains a summary of the results proved in this paper.l
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The following section defines the formal systems of knowledge and
belief in the event-based framework which is common in game theory
and economics. Section 4 clarif ies the relationship between the event-
based and the axiomatic (syntactic) approach. section b contains the
results, while section 6 concludes by providing an assessment of the
three fundamental conditions on individual beliefs as conditions of in-
tersubj ective rationality.

3 fnteractive systems of knowledg" and
bel ief

Let Q be a (possibly infinite) non-empty set of states. The subsets of
Q are called euents. Let l/ be a set of individuals. For each individual

e a r r o w s i n F i g u r e 3 p o i n t o n l y i n o n e d i r e c t i o n .
However, all the results proved are full characterizations.
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i e IV we postulate a belief operator 86 :24 -+ 2a (where 2a denotes
the set of  subsets of  Cl)  and a knowledge operator K6:24 -+ 2o. For
E g Q, B;E (respectively, hE) is the event that individual i believes
(resp. knows) ,U. These operators are assumed to satisfy the following
propert ies (-  denotes complement) :  Vi  g l { ,VE,F €24,

(Ax .1 )

(Ax .2 )

(Ax.3)

(Ax.a) Truth Axiom for knowledge:

(Ax.s) Consistency of bel iefs:

(Ax.6) Posit ive Introspection:

(Ax.7) Negative Introspection:

(Ax.8) Priority of knowledge:

(Ax.9) Awareness of own beliefs:

B ; { l :  Q  and  1 ( ; 0 :  f l .

if E g F then
K;E e 1 f ;F  and B;E e B;F

I i ; ( E  n F ) :  I i t E a I i t F
and B; (E n F. )  :  B;E o B;F

I{tE e E

B';E e -Bi-E

I{;E e I{,K;E and B,E g B,BtE

-l{. iE e I{,-6oB
and -B;E e B;-B:E

I(rE I  B;E

B;E C I(tB.,E

Necessity:

Monotonicity:

Conjunction:

,3

We cal l  a tuple (Q, N, {Bn}o.ro,  { / { lhe .n ' )  that  sat isf ies (Ax.1)-
(Ax.9) a l{B-system. Thts the logic of knowledge is S5, the logic of
belief is KD45 and (Ax.8) and (Ax.9) establish the relationship be-
tween knowledge and belief.2

We shall denote by & : O -+ 2a (respectively, Kt : Q -+ 20) the
possi,bil i ty correspondence associated with the belief operator B; (resp.
the  knowledge opera tor  K1) .  Thus ,  Va €  Q,  &( " )  -  {u  €  Q:o  €
'-86'-{w}} and Kt(a) - {u € O : a Q --lai '-{r}} t

zNote that  posi t ive and negat ive introspect ion of  bel ief  are redundant,  s ince they
can be deduced from the other properties (cf. Kraus and Lehmann 1988.)

3In the philosophy and AI l iterature it is more common to express the (Kripkean)
semantics in terms of accessibil ity relations. However, the notions of accessibil ity
relation and possibil ity correspondence are entirely equivalent. Given an accessibil-
ity relation R on Q, one defines the corresponding possibil ity correspondence P as
fol lows:  P(o) -  { . t  € Q: oRwt} .  Conversely,  g iven a possib i l i ty  correspondence
P one obtains the associated accessibil ity relation as follows: wRu' if and only if
, " t '  e P(w).
I t  is  wel l -known that ,  Vo € Q, VE g Q, @ € B, ,E (resp.  t ' t  e K;E) i f  and only i f
Bt(r )  e E (resp.  K;( . )  g E ) .Furthermore,  B;  sat is f ies consistency i f  and only i f  B,
i sse r ia l (V r , , , €  Q ,B6 fu t )  *A ) ,K t  sa t i s f i es the t ru thax iomi f  andon ly i f  K ;  i s re f l ex i ve
(Vcu € Q, a e Kr(r) ) ,  B;  sat is f ies posi t ive int rospect ion i f  and only i f  B;  is  t ransi t ive
(Yo,0 € O ,  i f  0 e S;(o)  then S;(0)  9 Bt(") )  and i t  sat is f ies negat ive introspect ion
i f  and only i f  B;  is  eucl idean (Vcr,0 e Q, i f  0 e Bt . (" )  then B;( . )  e Bi@)).  The
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The common belief operator B* :24 -+ 20 and the comrnon knoul-
edge operator 1t* :20 -+ 2o are defined as follows. First, VE eO let
B"E: f l ,e.nr BiE and K"E: [^ l ,er  KtE, that  is ,  B. ,U (resp. I {"8) is
the event that everybody believes (resp. knows) E. Let B:E : B"E
(resp. K:E -  K"E) and for r  )  l  let  B:E -  B"B:- t f  ( resp. I \ :E -
I{"1{:-1E). Then the event that E is commonly believed (resp. corn-
monly known) is defined by:

B*E -  
)  u:n

r = l

Let B* : Q -+ 2a and K* : fl -+ 20 be the corresponding possibility
c o r r e s p o n d e n c e s :  V c r  €  Q , 6 - ( a )  =  { a  €  0 : a  €  - B * - { a , , } }  a n d
,t-(o) -  {a € f )  :a € - f i * ' - { r } } .  I t  is  wel l  knownathat 6* coincides
with the transitive closure of Ule .nr 6;, that is,

Ya,0 € Q, P e B.(a) i f  and only i f  there is a sequence
( i r , . . . , i * )  i n  , l /  a n d  a  s e q u e n c e  ( n 1 . , n t , . . . , \ * )  i n  C I  s u c h
tha t :  ( i )  ryo  :  d ,  ( i i )  ry -  

-  p  and ( i i i )  Vk  -  0 , . . . , f f i -  I ,
t l t  +r  € Bt.r*r(r ln) .

Similarly, rC* is the transitive closure of Un., Kn.

Example 3 In a KB-system not all the properties of individual beliefs

/ knowledge are inherited by common belief / knowledge. In partic-
u]ar, l{egative Introspection of Common Belief (-B*E C B*-B*E)
and Awareness of Common Belief (the counterpart to (Ax.9): B.E 9
I\*B*E) are not satisfied in general, as the following example shows;
l / :  { I , 2 } ,  Q  -  { a , ! 3 } ,  K t ( o )  -  B t ( " )  -  { o } ,  K t ( f i )  -  B t ( f l  =  { g } ,
Kr(* )  -  rcz@) :  { " ,0} ,  Br (o)  =  Br (13)  =  {p}  Thus, ( - (o)  -
K.(P) -  {a,0},  B*(r)  -  {" ,p} and B*(0) = {B}.  This is i l lustrated
in Figure I according to the following convention which will be used
throughout the paper. States are denoted by points and a (individ-
ual or common) knowledge possibility correspondence K : O -+ 20 is
represented by rectangles which partition the set of states, while a (in-
dividual or common) belief possibility coruespondence B : Q -+ 2a is

same is t rue of  1{ ;  and Kr. I t  is  a, lso wel l -known (cf .  van derHoek 1993) that  (Ax.8)
is  equivalent to I3;( r )  !  K;(q) ,  Vc, , ,  (  O,  and (Ax.9)  is  equivalent  to the fo l lowing:
V a , 0 , ?  €  O ,  i f  t 3  e  K , ( " )  a n d l  e  B , ( 0 )  t h e n l  €  B ; ( a ) .

4See, for  example,  Bonanno (1996);  Fagin et  a l .  ( toos);  Halpern and Moses
(1992);  L ismont and Mongin ( tSS+).  These authors a lso show that  the common
belief (knowledge) operator can be alternatively defined by means of a finite l ist of
axioms, rather than as an inf in i te conjunct ion.
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represented by arrows as follows: ut e B(r) if and only if there is an
amow from u to ut .  Let  E = U3]1.  Then B*E -  {13},  -B*E -  {a}
and B*-B*E : A. Thus -l{egative Introspection of common belief fails:
-B*E g B.--B*8. Furthermore, K*B*E - f i. Hence also Awa-reness
of Common Belief fails: B* E g K. B"E.

Given two events E and -F, we denote bV @ -+ F) ! f2 the following
event

E -+ h 'dg -E Lj  F.

T h u s  a e  ( E  - + F )  i f  a n d o n l y i f  a € E  i m p l i e s  a €  F  ( h e n c e  E g F
is equivalent to (E -+ F) = 0). Furthermore, let

E < + F d g @ - + F )  n ( F - + E ) .

Thus a e (E ++ F) is equivalent to "a e E if and onlyif d € F" (hence
E - F is equivalent to (E <+ f ) - CI)

4 Event-based versus syntactic approach

In this paper we have employed the event-based approach which is
common in game theory and economics. On the other hand, the philos-
ophy and computer science literature usually relies on the axiomatic-
syntactic approach. In this section we clarify the relationship between
the two.

The axiomatic approach starts with a propositional language aug-
mented with (individual and common) belief and knowledge operators.
With abuse of notation, we shall denote these operators by Bt., B*, Ki
and fi*. Furthermore, we shall denote formulae by capital letters, such
a s  E  a n d  F  a n d  u s e  t h e  s y m b o l s ' - + ' a n d ' + + ' f o r  t h e ' i f  . . .  t h e n . . . ' a n d
'if and only if '  operators on formulae, respectively. Again with abuse
of notation we denote by K B the system of multimodal normal logic
where the 1{,; operators satisfy the 55 logic (Truth, Positive and Neg-
ative Introspection) , Lhe 86 operators satisfy the KD45 logic (Consis-
tency, Positive and Negative Introspection) and individual knowledge
and belief are connected by the two axioms corresponding to (Ax.8)
and (Ax.9), namely K;E -+ BiE and BiE -+ I{,;B;8. Furthermore,
the usual axioms for common belief and common knowledqe are as-
sumed.5

5See,  fo r  example ,  Bonanno (1996) ;  Fag in

(1992) ;  van  der  Hoek (1993) ;  t r r - t  der  Hoek and

( 1 9 8 8 ) ;  L i s m o n t  a n d  M o n g i n  ( t O O + ) .

e t  a l .  (1995) ;  Ha lpern  and Moses

Meyer  ( tS0S) ;  Kraus  and Lehmann
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Our characterization results are typically in the form of equality be-
tween two common knowledge events, say I{*E - 1{*F. Now, equality
of the events K*E and 1{*F is equivaient to validity of the formula
K*E ++ K*F, that is, its truth set is the universal set Cl. (How-
ever, in general, the formula E ++ F rs not valid.) Thus, by com-
pleteness of the system IiB 6, a result of the form I{*E - 1{*F in
the event-based approach corresponds to the following syntactic result:
KB I K*E ++ 1{*F (that is, the formula K*E ++ 1{*F is a theorem of
system K B). In turn, this is equivalent to saying that F is a theorem of
KB+E (the system obtained by adding E to kB) and E is a theorem
o f K B + F .

5 Results

The following events capture important intersubjective properties of
beliefs / knowledge (throughout the paper, events that represent prop-
erties of beliefs / knowledge are denoted by bold-face capital letters).
Let

Negative Introspection
o f  Cornmon Be l ie f  N ICB = ,3 ,  ( -B ,E  -+  B , -B*E)

Awareness of  Cornrnon Bel ief  AW'CB =r3r (B,E -+ K*B,E)

Cau t ion  abou t  Corn rnon  Be l ie f  CAUCE- , ! ,u "J "  (B "B ,E  -+  K ,B ,E)

Thus c,; € NICB if and only if, for every event E , if u e -B*E then
u € B*--,B*E;c,r € AWCB if and only if, for every event E,if u e B*E
then o € ,1{* B*E; c,r € CAUCB if and only if, for every individual i
and every event E, if u € BIB*,U then u € KtB*8.

NICB is the analogue, for comrnon belief, of (Ax.7) for individual
beliefs, while AWCB is the analogue, for common belief and knowl-
edge, of property (Ax.9) of individual beliefs / knowledge. CAUCB,
on the other hand, captures the notion of intersubjective caution of
individual beliefs: individuals are cautious in what they believe to be
common belief, in the sense that, while - in general - they allow for
the possibil i ty that they have incorrect beliefs, such mistakes are ruled
out for common belief events.

The following proposition gives the properties of the possibil i ty cor-
respondences that characterize these three events. For example, in Fig-
ure  1 ,  NI " "  -  {p } ,  AwcB -  {o } ,  cAUcB -  0 .  That  cAUcB =  A

6See Kraus  and Lehmann

M e y e r  ( 1 9 9 5 ,  T h e o r e m  2 . 1 3 . 5 ,

(1988, Theorem 2.6,  p.  160) and van der Hoek and
p . e 3 ) .
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can be seen directly by noting that at every state individual 2 believes
that E - {P} is common belief (BzB.E - Cl), but she does not know
this,  s ince K2(u) -  f ) ,  for  every u, , ,  whi le B*E -  {P}

All the proofs are given in the appendix. 7

Proposition 1 The following holds for every a € f);
(, a € NICB if and only if B* is euclidean at a, that is,Yp,l €

B . ( o ) ,  1  €  B . ( 1 3 ) .
( i i )  a € A\MCB i f  and only i f ,  Va,p,^1 € Q, i f  0 e K.(a) and

j  €  B - ( B )  t h e n  t  €  B - ( o ) .
( i i i )  a € CAUCB i f  and only i f  Vi  € N, Y13, l  €Q, i f  P e K6(a) ancl

1 € B*(p) then there exisfs a 6 € &(*) such that 1 e 8.(6).

Although, typically, NIt ' + Aw'", AW"" + CAUCB and NI"t I
CAUCB, the three properties of Negative Introspection of Common
Belief, Awareness of Common Belief and Caution about Common Belief
coincide when commonlu known.

Theorem b.1 1{.NICB - K*AwcB - I {*cAUcB.

Definition 1 A state o is regular if at a any of the evenfs NI ,
AWCBor CAUCB ur" common knowleclge (e.g. if a € I{.CLrJcB );
similarly, a K B-system is regular if any of those events coincides with
the universal set (e g. if CAUCB - 0).

Example 4 l{one of the above properties of beliefs / knowledge em-
body agreement-type restrictions on individual beliefs, as the follow-
ing example,  i l lustrated in Figure 4,  shows:,4/  -  

{ I ,2} ,  f )  = {o,0},
Kr ( r )  -  Kz( r )  -  {o ,p }  Va. ,  €  {2 ,  B t (o )  -  Br (C)  -  {o }  ,  B2(cu)  -

Bz(0 = {P} Thus K.(r) - B.(r) = Q Vc,., € Q. f{ere NICB =
AWCB - CAUCB - CI and yet the two individuals "agree to strongly
disagree" in the sense that, at every state, it is common knowledge and
common belief that individual 1 believes E - {al while individual 2
believes --8.

We now introduce two more properties of beliefs:

1}uth of  indiv idual  bel iefs TI  B = 
. [ , , ' , ,1"( t ,E 

-+ E)

D isagreement  D IS  -  B* -B*T IB

TAll the results are proved for weaker systems than KB-systems, in part icular

the truth axiom for knowledge is not required for any of the results. To simpli fy the

expos i t ion  we have adopted  in  the  tex t  the  s tandard  KB-sys tems d iscussed in  the

l i te ra tu re .
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Figure 4

Thus a e TIB if no individual has any false beliefs al a, that is, for
every i e l,{ and every E QQ, if a € B6E then cv € E.It is well-known
that a € TIB i f  and only i f ,  Vi  e 1/ ,  o € &(") .  The event B*TIB
captures a property known in the game theoretic l i terature as common
bel ief  in no error (cf .  Ben-Porath 1997, Stalnaker 1996, Stuart  1997.)
Disagreement is defined as common belief in the lack of common belief
in no error. We refer to its negation, -DIS, as Agreement. Thus at state
a there is Agreement if and only if for some p e B.(o) , 13 e 8*118.8

Theorern 5.2 --DIS r l  I {*CAUC" -  B*T1B n K*AwcB .

Thus regularity and Agreement ensure strong intersubjective consis-
tency properties; arguably the strongest plausible (see remark after
Theorem 5.4).

For the next result we need to introduce two more properties:

Truth of Cornrnon Belief TcB -  
n  (B .E  -+  E )

zeza
Equivalence of Cornrnon Belief

and Cornrnon Knowledge EQU"t  -  
a  ^ (B .E 

++ K*E)
E  E 2 t z

8 Bon..rt to and Nehring (f  OSAa) motivate the notion of Agreement as -DIS in two

d is t inc t  bu t  equ iva len t  ways :  (1 )  the  absence o f  "agree ing to  d isagree"  about  "un ion

consistent" qual i tat ive bel ief indices (a general izat ion of the Agreement property

in t roduced by  Aumann (1976) ,  and (2 )  the  absence o f  unbounded ga ins  f rom bet t ing

(assuming moderately r isk-averse preferences).

eIt is straightforward that a €
i f  and  on ly  i f  B . (o )  =  K* (a ) .  I n  th

{cr} .  In the example of  Figure 4,  1
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TcB cap-tures the property that only true facts are commonly believed
(u € TcB if al{ only if, for every event E, if u e B*E then u €E') while EQU"t is the prope^rly that common belief and common
knowledge coincide (a,' e EeTJcB if and^only if, for every event E, if
u e B*E then u € I{*E and uice uersa). e

If one adds to regularity the hypothesis that it is common knowledge
that only true facts are commonly believed, one obtains the coliapse of
common belief into common knowledge.

Theorem 5.3 I {*CAUCB n f i*  TcB -  K*EeU"t .

Remark L In all the theorems common knowleclge of'the events under
consideration is crucial. For instance, in Figure 7, at state {), while there
is common knowledge of the Truth of common Berief (0 e x.r"d),
there is only caution about common Betief but not common knowl_
edge of it (P € cAUcB but p # K.cArJcB); in rine with the above
theorems, Awareness of common Belief fail, ui thut state (p # Aw" "j
and thus common knowledge and common belief fail to coincide ([J (
EQU"',) . similar counterexampres can be constructecr in each case.
our last theorem shows that putting together the three conditions of.
Agreement, common knowledge of cautiln about common Belief and
common knowledge that only true facts are commonly believed leads to
the collapse of belief into knowledge for euery ind,iuiclual. The theorem
moreover states that such collapse of individual belief into knowledge
is also equivalent to the hypothesis of comrnon knowledge that every
individual has correct beliefs. Let

Equivalence of bel ief and
knowledge for every individual E e u t t -  n  n  ( B " E + + K , E )

r € l J  p . c r f l

for every individual i and event _8,
&E) i f  and only i f  she knows y'

( o  e  I { 6E ) .

Theorem 5.4
I i * T r a .

In view of the degeneracy uncovered by Theorem b.4, the two condi_
tions of Theorem 5.2 (Agreement and common knowledge of caution
about Common Belief) define the strongest plausible intigrated inter-
subjective logic of knowledge and belief.

elt is straightforward that a e  TcB i f  and  on ly  i f  a  €  B* (a l
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6 Conclus ion

The analysis of this paper has spanned the intersubjective gap between
belief and knowledge by three intersubjective consistency ctnditions:
Agreement (-DIS), common knowledge of caution abut common Be_
lief (1{,* cArlcB ), ur4 common knowledge that only true facts are com-
monly believed (It*T'" ). How prausible are these conditions? can they
perhaps even be viewed as "intersubjectiue 

rationality,, conditions?
As a reference point, it is instructive to consider the condition of"common belief in no error" (B*Ttt). prima facie, a case for it as a

requirement of "intersubjective 
rationality" can be made by viewing

it as an intersubjective generalization of secondary reflexivityl0: every
agent is willing to underwrite epistemically every other ug"rri,, beliefs
to the extent that he is certain of them.

However, a reinterpretation of Example 1 shows that this condition
cannot be always applicable, which casts some doubt on the intersub-
jective rationality interpretation. Consider the following augmentation
of the story underlying Example 1. At date zero, both individuals took
it for granted that individual 1 was a legitimate child; however, after
having a private look at her birth certif icate, individual 1 discovers to
her great surprise that she is an i l legitimate child. Formally, this can
be described in a two-state universe augmenting Figure 1. The original
Figure 1 now describes the individuals, beliefs it dotr,l, after the (one_
sided) inspection of the birth certif icate. We now augment Figure 1 by
adding two new "epistemic agents" describing the individuals, beliefs
at date 0; the beliefs of each of these two new agents are a replica of
individual 2's beliefs in the original Figure 1 (thus of 2's beliefs at date
1)' At date 0, both individuals'beliefs coincide and therefore satisfy
any meaningful intersubjective rationality condition. The individuals,
beliefs at date I , in particular individual 1's certainty of the falsity of
her counterparts' beliefs, are a necessary result of the information re-
ceived in the interim; thus neither individual,s beliefs at date 1 can
be crit icized for lack of intersubjective rationality.

. 
Agreement (-B*--B*TIB ) can be viewed as an appropriate weaken-

ing of common belief in no error (B*Tr") not subject tt an objection
of this kind: if the epistemic assessments of an event E (that i i . b"-
l ieved or that E is not believed, and more generally of a ,,qualitative
belief index" ) of both agents are common belief, they -r,ri coincide
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(cf. Bonanno and Nehring 1998a.) If any intersubjective consistency
can stake a claim on rationality, it would seem to be Agreement: its
equivalence to the absence of unbounded gains form betting (cf. Bo-
nanno and Nehring 1998a) Iends it strong normative appeal. Moreover,
it is not subject to the contingencies of history, as it restricts agents'
beliefs only when they are jointly commonly believed. In Example 1, for
instance, only trivial beliefs are jointly commonly believed.llIt would
even make perfect sense to require Agreement in a game after a player
observes an unexpected move by an opponent!

Common knowledge of Caution about Common Belief K*CAIJOB ,
by contrast, is exposed to the same problems in a dynamic setting that
plague common belief in no error; note that it fails even within indi-
vidual 1 who at date 0 took it for granted that she was a legitimate
child (and believed that she would continue to take it for granted),
recognizing the possibil i ty (in terms of knowledge) that she might l ive
to change her mind. On the other hand, while not categorical, Caution
about Common Belief seems highly reasonable as a constraint on how
individuals "init ially" construct their intersubjective beliefs, prior to
the receipt of specific private information (but incompletely informed
of each other's beliefs), for example prior to the actual play of a game.
This would be sufficient to justify the striking Stalnaker-Stuart justif i-

cation of non-cooperative play in the repeated prisoners' dilemma game
(Sta lnaker ,  1996;  S tuar t ,  1997) .

Finally, common knowledge of the truth of common belief (.K.T" u)

has the flavor of an empirical rather than a rationality assumption. As
the latter, it seems implausible; note, for example, that applied to a
group of one, it coincides with Equivalence of knowledge and belief.
12 In vierv of Theorem 5.2, and taking into account the plausibil i ty of
both --DIS and 1{*CAUCB, it seems implausible even as an empirical
assumption, in spite of the appeal to the prima facie reasonable intu-
it ion that a group's beliefs may enjoy higher epistemic dignity than any
individual's beliefs.

Appendix

For the sake of generality, all the proofs will be given for the weaker
systems obtained by replacing (Ax.4) (truth axiom for knowledge) with
the following weaker axiom: Vi € l/, VE C Q,

11Not"  that ,  whi le indiv idual  2 's bel iefs about the event {B} are common bel ief ,
1 's  bel iefs about {P} are not .

12By contrast ,  both -DIS and CAUcB u, ."  automat ical ly  sat is f ied in th is case.
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( A n  . 4 ' ) I \ ;K*E g K.E

Indeed, as pointed out below, some results hold even without assuming
(Ax.4'). Throughout this appendix, the systems considered are those
obtained from KB-systems by weakening (Ax.a) to (Ax.4/). BV weak
KB-systems) on the other hand, we shall mean systems obtained from
KB-systems by dropping (Ax.a) (without replacing it with another ax-
iom, in part icular,  wi thout assuming (Ax.a ' ) ) .

Proof of Proposition 1.

(i) is well-known (see Chellas 1984) and (i i) follorn's from Theorem
a.3 (c)  in van der Hoek (1993, p.  183).  Thus we shal l  only prove ( i i i ) .  Let
P be the property stated there. First we show that if P is not satisfied
at a then a ( CAU"B. Sr,ppose P does not hold at a. Then there exist
i  e  -n /  and p ,7  €  C,  such tha t  0  e  K t (o ) ,1  €  B . (13)  and,  Vd e  B6(a) ,

1 4  B . ( d ) .  L e t  E  -  { u  €  C I : u  e B * ( u ' )  f o r  s o m e  w '  e  B t ( " ) }  T h e n

1e E,  and,  by  cons t ruc t ion ,  a  €  868*8 .  S ince  ̂ l  €B* (p)  and 1 f  E ,
B . ( p )  f  E ,  t h a t  i s ,  P  e  B . E .  H e n c e ,  s i n c e  0  e  K t ( * ) , o  f  I { 1 B * E .
Thus,  s ince  o  €  B1B*E,  a  e  (B iB*E -+  K1B*E) . I t  fo l lows tha t
ci f i CAUCB. Next we show that if a ( CAUCB th*n P is not sat-
isfied at a. Suppose that a f CAUCB. Th.n there exist E C f) and
f g 1/  such that a € BiB*EO--I{ , iB*,E. Since a e -K;B*E, there exist

0 ,1  e  f )  such tha t  13  €K6(a)  and 7  e  B . (P) ) ' -8 .  S ince  a  €  B ,1B*E,
V d  €  & ( " ) ,  d  €  B * 8 ,  t h a t  i s , 6 - ( d )  C  E .  H e n c e  1  e  B . ( d ) .  T h u s  P
does not hold at a. n

Proof of  Theorem 5.1.

The proof of Theorem 5.1 u'i l l  be carried out in three steps. The flrst
step is given by Lemma 1, which is true in weak systems (that is, with-
out assuming (Ax.4')). The second step is given by Lemma 2, which is a
restatement of Theorem 5.1 for weak systems that satisfy an additional
property. The third and flnal step is given by Lemma 4 which shows
that this additional property is equivalent to (Ax.4').

Let (VBi* stands for "Veridicality of individual belief about com-
mon belief" )

VB ' * -  n  n  (B1B .E -+B .E ) .
i € N  E € 2 a

INrnnsueJECTrvE CoNs

Thus ,, € VB,. if arrd only if
Bt  B*t  then u € B*8, that  i i
about what is commonly belir

Rernark 2 For every cv € e,
B.(*)  ,  ld € Br(*)  such that
Bonanno and l{ehrj ng (lggga,

Lenrma L In a weak system
Iowing holds: I {*NICB g f i_\

Proof. (1i*NrcB c I{.VB,*)
rl € NICB. Fix an arbitrary i
r r  €  (B ;B*E -+  B-E) ,  o r ,  equ.
S i n c e 0 € N I C B , a € I - B - E
Then a  €  B* -B*E.  By  de f in i t i
sistency of i 's beliefs (cf. Ax.5)
- B i B * E .  H e n c e  o  € - - B , i B * 8 .
of I i*, it follows that 1{.NICB
(1{*vB,* g 1(_ cLrJcB).  Let
, ( . (o ) .  We want  to  show tha
a n d E C Q s u c h t h a t 0 e B t
need to show that r € B*8.
13 e t i6BuB*E hence J € B;B*t
and 7 e Kt(0),  ^ /  e K*(cv).  Thu
s i n c e  1 e  B I B * E , 1 e  B * 8 .
(  h ' -  CAUCB q I{-  AWCB ).  L
C e  K- (o) .  We want  ro  show t
such that {} e B*8. We need t<
sequences  ( i r , . . .e_)  in  i /  and
a n d ,  f o r  e v e r y  k  _  I , . . . , f f i ,  T J k
Tm € B*8. First of all, note tha
t l n  €  K * ( a )  f o r  a l l  A  -  0 , . . . . m .

v k  -  0 , . . . , r
Since Uo - l] e B.E and, bv d
B:,B*,U. Hence, by (  b I ) ,  io <
0r € B*8. Since B*E C Bi2I
Tt e I{1"B*E. Thus, since 42 t
argument rn times we get that 11

' J T h e r e  
t h e  e v e n t  V B , *  i s  d e n o t e d

6* (resp. 6; ) is denoted by /* (resp. I
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without assuming
sidered are those
(Ax.4'). By weak
ns obtained from
with another ax-

s from Theorem
ly prove (i i i). Let
P is not satisfied
Then there exist

and, Vd e B6(a),
'  e  Br ( " ) ] .  Then
r-(p) and 1 f  E,
d ) ,  a  f  K 1 B * E .
. It follows that
ren P is not sat-
: x i s t E ! f J a n d
B*E, there exist
nce cY € BiB*8,
t  8 . (6 ) .  Thus  P

steps. The first
rs (that is, with-
ma2, which is a
fy an additional
r 4 which shows

lief about com-
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T h u s c ,  € v B ' *  i f a n d o n l y i f  f o r e v e r y i n d i v i d u a l i a n d e v e n t  E , i f  u  6BtB*E then u e B*E' that is, at u noindividual has mistaken beliefsabout what is commonly believed.

Remark 2 For."r:r, o € e, o € vBr* if and only if,Vz e lr, v7 €B.(o) ,  ld € &(a) such that
Bonanno and Nehring (iossullrr€ 

8.(6)' For a proof see rernm a 2 in

Lemma 1 In a weak system (thus without assuming (Ax.at)) the for_lowing hotds: , { i -NICB s 1i .vn, l  q ; : ; ; ;?o C,rr .*A\ry( ,a.
Proof '  (1 i*NI 'B q 

{{ , -vB'-) .  First  we show that NI 'B c vBo*.  Leta € NIca. Fix an irbitr ury i€ .A/ and E e A We want to show thatu € (BtB*E -un*tl,:.,^.1:ivalently, il" _ a (_B* E _+ __,BtB*E).
S i n c e  a  e  N I c , a €  ( - B * b  -  B : : B . E ) .  S u p p o s e t h a t  a  € _ B * 8 .Then d € B*--- ,8*E. By'def in i t ion of  B*,  B*__f i .b c Bt_B*E.ByCon_sistenc.y of  i 's  bel iefs (cf .  Ax.5) ,  B- i -B*U 

S_,nn-n_g.Thus B*_B*E C-BtB*'. Hence a e ._BrB.i. Thus Ni"; si;;. ;;;;oti'i.rtyof 1{*,  i t  fo l lows that { .NI"r  C l i *V; , - .  
=

( f f .vBo* q 1(-cAUcB).  Let  o= a^ir* ig i -_and f ix an arbi t r  ary iJ €K.(*). We want to show that p € CAUC;. Fix arbitrary i 6 ,A/and E C 0 such that B € BiB*'. Fix an arbitrary 1 Q Kr(c) w"need to show that 7 € B*8. s ince B.B*E a I joBoB*E (cf .  Ax.g),0 e xnBrB*t hence 1e BiB*E. ev a"fi" i i-, irr5*, since /3 e K.1a1and 7 e h@), 1 Q K.(o). Thus, since a e I{*VB,*, j  eVdl-1H",r..,s i n c e l e Q . B . E , l € B * ' 8 .
(K.cAtJcs c l {*awcB).  Let  a € I {*cAUcB. Fix an arbi t rary0 e l1.(a). We want to show that p € AWCB. Fix arbitrary E C C)such that t e B.E. We need to show that B € 1{* B*E.Fix arbitrarys e q u e n c e s  ( i t , . . . i ^ )  i n  1 /  a n d  ( T o , r l r , . ; . , r 1 ^ )  i n  e  s u c h  t h a t  U o :  C ,a n d ,  f o r  e v e r y  A  

-  
1 . , , . . . 1 m )  U n ' ' € . K 6 r ( n * _ r )  . W "  n e e d  t o  s h o w  t h a tTm € B*8. First  of  a l l ,  note that ,s inc"t  a 'n.(o\  by def in i t ion of  rC*,\ x  €  K * ( a )  f o r  a l l  &  -  0 , . . . ,  m .  H e n c e ,  s i n c e  a  €  K * C A U C B .

Vk -  0 , . . . ,w , ,  on  €  CAIJ ]B ( 5 .  1 )
Since To = g e B*E and., by definition of
B t r B * E .  H e n c e ,  b y  (  5 1 ) ,  r y o  e  h i r B * E .
Tr € B*E. Since B*E C Bt,B*g, Tl t  €
\ t  € I {d. ,B*8.  Thus, s ince ry i  e tCr,( i ) ,
argument m times we get that q^ e B* E.

!:, B.E C B,;,B*E, ryo €
Thuj, since r71 e Kt,(ry0),
Br,B*8. Hence, uv is.r j ,

Tz € B*8. Repeat ine th is
!

o t e d b y T 6 : 6 a n d t h e p o s s i b i l i t y c o r r e s p o n d e n c e
6*  ( resp .  B ; )  i s  denoted  by  T*  ( r " "p , . - t ;1 .
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Remark 3 A possibility corcespondence P : e -+ 2a is secondary
reflexive ifYa,0 e Q, {l e n6.t implies g e n1B1 . secondary reflexivity
is implied by euclideanness. Hence, for every i e l{, Bt and K; are
secondary rcflexive. It follows from the definition of B* and K* that
both B* and K* are secondary reflexive.

Let (NIK* stands for "Negative Introspection of common knowledge,,)

NIK* - n (-/{* E -+ I{*-.I i*E).
E e 2 a

Rernark 4 Analogously to (i) of Proposition 1, it can be shown that,
Y0 e Q, {3 e NIK* if and only if K* is euclidean at p, that is,Vt,d €
lc . ( i l ,  d € K.( t ) .

Lemma 2 In a weak system that satisfies I{*NIK* - e the following
holds:

I {*NIca = I {*VB'* -  K*CAUCB - K*AWca

Lemma 2 follows directly from Lemma 1 and the following lemma
which can be viewed as a generalization of Lemma2.2 in Kraus and
Lehmann (1988) to the case where individual knowledge satisfies the
KD45 (rather than the 55) Iogic.

Lemma 3 ln a weak system (thus without assuming (Ax.a,l the fol-
lowing holds:1{*NIK* n 1i*AWCB q 1{.NIca.

Proof. Let a € I{*NIK* n,a{*AWcB and fix an arbitrary 13 e K.(o).
We need to show that B € NICB, that is (cf. (i) of proposition 1), for
al l  d,  1 € B*(13),  6 e B*(7).  Fix arbi t rary 6,1 e B.(p).  By secondary
reflexivity of B* (cf. Remark 3),

INrnRsueJECTrvE CoNs

Let (V K'* stands for ,,Ve
common knowledge,,)

VK'* _ 
N

?€f f

Thus L,, € VKi* if and onlv .
u € K1I{.E then c.., € 1{* E, tI
her knowledge of what is comr

L e m m a 4 N I K . - O .

Proof. First note that (Ax.4,)
show that,  in turn,  VKi* = O
this to be true in general, for a

ln l ,g* be any col lect ion'of  of
ity, Conjunction, Consistencv. .
(Ax. l )  -  (A*.  B) and (a*.r)_1
lng cornmon operator. We war
i f  N I c t '  =  0 .  L e t  B i :  O  - +
associated with B;. For every l
respondence K,; : e -+ 2a as {
only i f  B,(r , )  _ &(u).  Then K
Yu,,.,t' € Q, a,, € Ki(",,) and if u,,
economics and game_theory litr
partztion of individual i) . Let K
(V, g Q,V E C Q, c.,r € A-;6 if an
ward to verify that the system s
(resp. K-) be the associated con
spondence). Then K* also gives
euclidean, that is (cf. propositic
Lemma 2 and conclude thatd e B.(d)  (5 2)

Since,  for  a l l  u  € {1,  B. ( r )  g  K.( r ) ,  d ,1 € K*(B)  .  S ince p € K.(o)
and a € K*NIK. ,  0 e NIK*. Hence (cf.  Remark 4),

6  e  K . (1 )  (b  B)
Since 13 e K.(a)  and L= rc .@),  bV t ransi t iv i ty  of  K* ,  1€ K_(a) .
Thus, since o € K*A'WCB,

1(*NIc

Since K* is reflexive, 1{* satisfier
K*E Q E. Hence

V E  e  2 4 ,  I \ * E  = A

Suppose low that VBt* = e.  Th
by (5.5),  I {*NfcB = e and. bv ,
ment,  i f  NICB = Q then VBi*"-

'y € A.wca (5 .4 )
It follows from (5.2)-(5.4) and (i i) of Proposition 1 rhat 6 e B.(t). r



O -+ 2a is secondarY

) . Second ary reflexivitY

i €. I'{, Bt and Ki ate

:ion of f i* and K* that

rf common knowledge" )

K-E).

7, it can be shown that,

an at 13, that, is, V7, d €

\ I K * - Q t h e f o l l o w i n g

_ K*AWCB

rd the foilowing lemma

emma 2.2 rn Kraus and

. knowledge satisfies the

;suming (Ax.a'l the fol'
: 8 ,

an arbitrary P € K.(o).
(i) of Proposition 1), for
e B.(p). BY secondarY

(5 2)

C.(p)  .  S ince { i  e  K.(u1
mark 4),

(5 3)

; iv i ty  of  K* ,  J  € K-(o) .

(5 .4 )

;ion 1 that d € 6- (7). n
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Let (V Kr* stands for "Veridicality of individual knowledge about
common knowledge" )

VK'*=  n  n  (K ; ,K .U-+K.E)
i . -  N  E e 2 a

Thus u., € VKi* if and only if for every individual i and event E, if
u € K;K*E then c,. ' € K*E,that is, at ur every individual is correct in
her knowledge of what is commonly known.

L e m m a 4 N I K - - 0 .

Proof. First note that (Ax.4') is equivalent to VKi* - O. We want to
show that, in turn, VK'* - Q is equivalent to NIK* - f) . We show
this to be true in general, for any "common" operator. Let {86: 2a -+

2tl,;.r be any collection of operators satisfying Necessity, Monotonic-
ity, Conjunction, Consistency, Positive and Negative Introspection (cf.
(Ax. l )  -  (A*.  3)  and (Ax.5)-(A".7)) ,  and let  B* be the correspond-
ing common operator. We want to show that VB'* = f) if and only
if NICB : Q. Let Br : f) -+ 2a be the possibility correspondence
associated with .B,. For every i g .V construct a new possibility cor-
respondence K6: Q -+ 20 as fo l lows: Vu,u'  € Q, ut  € K{r)  i f  and
only i f  &(r ' )  -  Bt(u).  Then Ka gives r ise to a part i t ion of  Q, that  is ,
Yu,u t  € {2 ,u  €  K t (c , , , )  and i f  u '  €  K t (u )  then [ ; ( r ' ) :  &( r )  ( in  the
economics and game-theory literature this partition is called lhe type
partit ion of individual i). Let K; :24 -+ 2a be the associated operator
(Vu., € Q,VE q CI, u € I{,;E if and only if Kt(u) g E). It is straightfor-
ward to verify that the system so constructed is a KB-system. Let 1{*
(resp. K.) be the associated common operator (resp. possibil i ty corre-
spondence). Then K* also gives rise to a partit ion of Q and therefore is
euclidean, that is (cf. Proposition 1), NIK* - 0. Thus we can invoke
Lemma 2 and conclude that

1{- NICB - -I i*vBi* ( 5  5 )

Since rC* is reflexive, 1{* satisfies the Truth Axiom, that is, Y E e 20,
K*E g E. Hence

YE e2a,  K*E -  Q i f  and,  on ly  i f  E  -  Q (5  6 )

Suppose now that VBi* - CI. Then, by Necessity, /r*VBi* - 0. Thus,
by (5.5),  I {*NICB - O and, by (5.6),  NI""  -  0.  By the same argu-
ment. if NICB - CI then VB'* - f). tr
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Completion of proof of Theorem 5.1-:
by  Lemma4,  NIK*  -  Q;  thus ,  by  Monoton ic i tyo f  K* ,1 i *NIK*  -  f , ) .
Hence Theorem 5.1 follows from Lemma 2. tr

Remark 5 By transitivity and secondary reflexivity of B* and K*, for
every event E, B*E - B*B*E and I{*E - I{*I{*8.

Proof of Theorem 5.2.

The proof of Theorem 5.2 makes use of the following lemma.

Lemrna 5 ln a weak KB-system^(thus without assuming (A.4')), the
following holds: --DIS n 1{* CAUcBn NIK* C B*TI B .

Proo f .  Le t  a  €  - .D ISn1{*CAUcBnNIK* .  S ince  o  €  -DIS,  there
ex is ts  a  13  €  B . (o )  such tha t  0  e  B .T IB.  Suppose tha t  n  4  B .T IB.
Then there exists a 7 € B.(o) such that

1  #  B . T I B  .  ( b  7 )

S i n c e  B . ( o )  g l c . ( o ) , 0 , 1  € K * ( a ) .  S i n c e  o  €  N I K * ,  K *  i s  e u c l i d e a n
at o, hence

1 € re.@).  (5 8)
Since d  F_K*CAl lcB ? \d  13  €  K* (a)  and,  by  Lemma 1 ,1{ *CAUCB C
K * A w c B ,  p  €  A w c B .  T h u s ,  s i n c e  p  €  B * T I B , 0  €  I \ * B * T I 9 .
Hence,  by  (5 .8 )  ,1  e  B*TIB,  cont rad ic t ing  (S .Z) .  I

Completion of proof of Theorem 5.2:
( ' -DIs n 1{*cAU"^" g B*TIB n / {*Aw"t)  By Lemmas 4 and 5,
--DIS n f i *cAUcB g B.TIB .  By Lemma 1' ,  1{*  c 'ArJcB g 1{-AwcB'
(B*Ttu  n I { *AwcB C-DIS n  K*  Cy ' * IJ?B. )  By  Remark  b ,  B*TIB -

B*B*T1B and by  ser ia l i t y  o f  B* ,  B*B*TIB 
'g  

-B* -B*TIB :  - -DIS.

T h u s  B * T I B  e  - D I S .  B y  T h e o r e m  5 . 1 ,  I i * A W c a  C  K * C A U c B . l

Remark 6 Although -DIS o K* CATJCB q B*TIB n AWCB , the
converse is not true as the following example shows. lr/ - {1,2}, f) :

{ o , 0 , 1 } ,  K r ( * )  -  K t ( t ) :  { a ,  1 } ,  K t ( f r )  =  B r ( g )  -  { p } ,  B y ( a )  -
h(t)  -  { r} ,  Kz(o) -  Kz(p) = {" ,p},  Kr( i  -  Bz(r)  -  { t } ,  Br(*)  -
Bz(13)  -  {P} .  Thus ,Yu €  Q,  B* ( r )  -  {0 , t }  and K* ( r )  -  Q.  Here
we have tha t  T IB  -  UJ ,1 j ,  B*TIB -  e  and AwcB -  {o i .  Thus
B*TIB nAwcB - {cr}  .  an the other hand, CAUCB - I \* iA.U"t  -

a.

INronsueJEcrIVE Cowstsru

Proof of Theorem 5.3.

The proof of Theorem 5.3 is based
are essentially one-agent results.

Lemma 6 In a weak KB-svsten
AwcB rt K* TcB g Eeutb.

Proof.  Let  a € AWCE aK*Tc
B. (o) .  F ix  an  arb i t ra ry  p  e  K- ( " )
Thus (cf. Proposition I) g e B.(F
and P e B.(p), by Proposition 1 i '

Corollary L In a weak KB-syste
I{* Awc B n r{* Tc B g 1{- Eeuc

Proof. By Lemma 6 and monotor
q K-EQU"8. By Remark 5,  1{* l

Lemma 7 In a weak KB-system (i
Q, Vi € .ny', (i) BoKtE C It;E and

Proof. (i) From -KtE C I{i--Ki
((Ax.8) applied to the event --I{, i)

is  equivalent --8,--KtE g I { iE.1
-"'B,i-KrE ((Ax.5) applied to the
(ii) Since (by definit ion of K*) K*t
BtK*E C B,; I { , ;K*E and, by ( i ) ,  B
I{iK*8. On the other hand, bV (A

Corollary_ 2 In a weak KB-syste
I{*EeucB g cAtJcB .

Proof. Let a € 1{*EQU"". Fix ar
a Q BtB*8. We want to show thar
a € B, iK*E.Fix an arbi t rary 1 € B
Kr(")  g E/") ,  13 e K*(o) and
f ,  e PQUGB. H.rr .e,  s ince g e B*I
( i i )  of  Lemma 7, a € KtK*9. Now <
1 € K*.E. Furthermore, since h@
? €  EQUCB.  Thr r ,  s ince  1  €  h -E

Completion of proof of Theore
(1 i -cAUcu a I { *TcB g  / { -Eet
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' *NIK* -  0 .

* ancl K*, for

i^ n',,, ro"

-DIS, there
a  (  B*TIB .

(5 7)

is euclidean

(5  8 )

i *cAUcB g
€ 1{* B*TIB .

mas 4 and 5,
q  K*AWCB.

k 5 ,  B * T I B  -

I I B  -  - D I S .

, c A U c B .  I

I AwcB , the
=  { 1 , 2 } ,  Q  -

{0}, Br(') -
{ t } ,  Br(o) -
u) = fl. Here
= {a } .  Thus
K-CAUCB _
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Proof of Theorem 5.3.

The proof of Theorem 5.3 is based on the following two lemmas, which
are essentially one-agent results.

Lemma 6 In a weak KB-system (thus without assuming (Ax.4')),
l |wcB n ,I{*TcB q Eeu"".

Proof. Let o € A.WCB n I{*T1B. We want to show that K-(cv) q
B. (o ) .  F ix  an  arb i t ra ry  13  €  K- (o) .  Then,  s ince  d  €  K , ,TcB,0  eTcB.
Thus (cf. Proposition t) 0 e B.(P). Since a € AWca and g e K.1a1
and p  eB. (B) ,  by  Propos i t ion  1  i t  fo l lows tha t  p  e  B . (o ) .n

Corollary L In a weak KB-system (thus without assumrng (A.4')),
I { * / |wcB n  1{ *  TcB g  K.EeucB.

Proof. By Lemma 6 and monotonicity of K*, K*AWCB a I{*I{*T]B
c  1{ *EQU"B.  By  Remark  5 ,  K*K*TcB -  K*TcB.  n

Lemma 7 ln a weak KB-system (thus without assuming (A.4' )) ,V E g
CI,  Vi  € N, ( i )  B,&E 9K6E and ( i i )  BiK*E -  KiK*E.

Proof. (i) From -KtE I Kt-KtE (Ax.7) and 1{1-K,iE I Bt--I{tE
((Ax.S) applied to the event --KiE) we get *,I{tE 

9 Bt--KtE, which
is equivalent =8,-KtE e I{rE. This, in conjunction with ,86 I\ iE g
--Bt-KtE ((Ax.5) applied to the event KtE), yields &I{,iE g I{iE.
(i i) Since (by definit ion of I\*) K*E g KiK*8, by monotonicity of B,;,
BtK*E e goKtI{*E and, bV ( i )  ,  BtKtK*E e I { iK*,8.  Thus B, i ,K*E C
KtK* E. On the other hand, by (Ax.8) KtI{*E I  goI{*8.  n

Corollary_2 In a w9?k KB-system (thus without assuming (A.4')),
K * E Q U C B  g c A t J c B .

Proof. LeL a€ I{*EQU"". Fix arbitrary i € N and E ! Q such that
a € BIB*E. We want to show that o € K:B*E. First we show that a
a e BtK*E.Fix an arbi t rary  ̂ /  € &(o).  Then 0 e 8. ,U. Since &(")  9
K;(a) g K.(o),  g € K.(a) and therefore (s ince a € I { -EQUCB)

0  e  n Q U c B .  H " n . e ,  s i n c e  0  e  B . E , 1 3  e  I { * E . T h u s  a a  €  B 1 K * E . B y
(ii) of Lemma 7, a € I{tI{*8. Now choose an arbitrary 7 € Kt("). Then

1 € K*t .  Furthermore, s ince Ko(")  I  K.(o),1 € K*(o) and therefore

7  €  EQU"" .  Thr r r ,  s ince  ̂ f  €  K*8 , ' y  e  B*8 .  Hence a  e  K . iB*E. I

Completion of proof of Theorem 5.3:
( I { -CAUCB aK*T]B g  1{ -EQUC' )  gy  Lemma l ,  K*CAUCB n
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I{*TcB g K*AwcBn I{*TcB and by Corol lary I ,  K*AwcB aI{*TcB
c l{*ndv"".
(1 i .EQU'" g 1{.CAUct)  gy Corol lary 2 and Monotonic i ty of  / {* ,
1i* 1i* EQ-Ut'r g I{* CAUCB. By Remark b, I i* 1i* EeiI"u =
1 i -  EQUcB.
(I{ .EQUCB g K*TCB).  Let d € I {*EQU"'  and f ix an arbi t rary
13 e K.(a).  We want to show thaL p e TcB. Since d e K*EQUCB,
0  e  pQUcB.  Thr l r ,  by  Propos i t ion  I ,  B . (13)  -  rc * (B) .  S ince  g  e  K . (a ) ,
by secondary reflexivity of K* (cf. Remark 3) , {J e K.(P). Thus p €
B.(P).  Hence, by Proposi t ion I ,  13 e TcB. a

Proof of Theorem 5.4.

First we prove that

K*TIB -C -DIS n 1{* cAUcB n 1{* TcB

INrBnsusJECTrvE CoNs

r*TrB g l
From (5.11) we get (by intersec
1 ( * C A U C u  a K * T ] B  =  - D
I { * T I B  !  - D I S  n  E q u l B  n ,
I{*T]B C --.,DIS n nQurB n

We conclude the proof by sl
q K*TIB .  Let  a € -DIS t '
N I K . - O . S i n c e a € E Q U '
a e NICB n--DIS. By def in i1
Thus cv  e  B*TIB.  S ince  a  €  E
only if a € 1{* TIB . n

The following proposition
AWCB and EQUCB (recall
nof assumed the Truth Axiom
and Nehri"g (1998b).

Proposition 2 In a weak KB-
1{* AWCB c AWCB and K*E
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First note that K*TIB g B*T/B and, as shown in the proof of Theorem
5.2,,  B*Ttu g --DIS. Thus K*TIB e -DIS. Furthermore, s ince TIB c
TcB, by Monotonic i ty of  1{* ,  K*TIB C.I(*TcB. Final ly,  s ince TIB -
VBi*,  by.Monotonic i ty_of 1{* ,  I {*TIB g K*VB'*.By Lemmas 2 and
4, I{*VB'* - K*CArJcB. Next *" p.o* thut

--DIS n r{* cAtJcB n r{* TcB c K*TIB

( 5  e )

( 5 . 1 0 )

( 5 . 1 1 )

( 5 .  1 2  )

( 5 . 1 3 )

Let n € --DIS n fi* CAIJCB n -I{* TcB. By Theorems b.2 and 5.8,
a  €  B*T/B n  EQU" t .  Hence a  €  K*TIB.  Thus ,  by  (b .g )  and (b .10) ,

. -DIS n I {*CAUCB n 1{* TCB _ I{*TIB

Next we prove that

I { *TIB g Eeut"

Let a € / {*TIB. Fix arbi t rary i  € l /  and E gA and suppose that
a € B,;t. We need to show that a e KtE. Fix an arbitrary P e K,;(a).
we have to prove that B € E. since cv € &E 9 KrBtE and g e K;(a),

0 e & s .
Since a  €  K*TIB and g  e  Kr ( " )  !  K . (o ) ,  {3  €TIB.Hence,  by  (b .13) ,
0 e E. Bv (5.12) and Monotonic i ty of  K*,  I {* I {*TIB g I { -EeU/B.
By  Remark  5 ,  K*K*TIB -  K*TIB.  Thus  K*TIB g  I { -EqUrB.  I t
follows from this and (5.12) that
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icity of 1(*,
}QU"" :

n arbitrary
(*  EQUCB ,
B  e  K . ( a ) ,
. T h u s 0 €

(5 e)

of Theorem
since T1B q

rince TrB q

mmas 2 and

( 5 . 1 0 )

5 .2  and 5 .3 ,
r  a n d  ( 5 . 1 0 ) ,

( 5 . 1 1 )

( 5 . 1 2 )

suppose that

v  p  e  K r ( a ) .
Ld  f  €  K r@) ,

The following proposition highlights an
AWCB and EQUCB 1.".ull that throughout
nof assumed the Truth Axiom for knowledge).
and Nehri"S (1998b).
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(5 .14)

interesting property of
this appendix we have

For a proofsee Bonanno

INronsusJEcrrvE CoNstsrBNCy oF KNowLpocE AND

I { *T IB g  Eeur"  )K*EeuIB

From (5.11) we get (by intersect ing both s ides with -DIS) that  -DISn

1{*CAUC" )  K*TCB = --DIS f)  K*TIB and from (5.14) --DIS . l
I{*TI B c -DIS n EQUIB n 1{* EQUt1, Thus -DIS n r{* cAUcB n
I { *T ]B C -DIS n  Eeu/B n  I { *EeuIB.

We conclude the proof by showing that -DISlEqUlBnK*EQUt"
q  K*TIB.  Le t  o  €  - -DIS n  EQU/B a  K*EQUt t .  By  Leqma 4 ,
Ntx -  -  C I .  S ince  o  €  EQUIB a / { -EQUIB,  NIK*  -  N ICB.  Thus
o €  NICB n- -DIS.  By  de f in i t ion  o f  - -DIS,  NICB o- - ,DIS e  B.T IB.
T h u s  a € B * T I B .  S i n c e  a € E Q U I "  a I { * E Q U I B ,  a  €  B * T ' "  i f  a n d
only i f  a € K*T18. I

Proposition 2 In a weak KB-system (thus without assuming (Ax.4' )),
I { *AwcB c  AwcB and K*EQUt t  q  EQU"" .

( 5 . 1 3 )

c e ,  b y  ( 5 . 1 3 ) ,

:  K * E Q U I B .
: *EQUIB.  I t
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Formalizing Potent
The KARO framework revi

W.  vnN  DER HoEK,  J . - J .CH.  Mpyp

We revisit  the (KARO) framework th
about  Knowledge,  Ab i l i t ies ,  Resu l ts  an
original proposal, the treatment of abi l
tha t  o f  oppor tun i ty ,  wh i le  they  seem re
proposa l  a lso  y ie lded a  ra ther  non_s ta
inc lud ing  so-ca l led  t l - ru les ,  i .e .  ru les  v
nal ly, the approach suflered from some
abil i ty of the agent to perform sequer
chapter ,  we recons ider  these ma[ le rs  a
treats opportunity and abi l i ty orr a par
dard  comple te  p roo f  sys tem (3)  does  r
regarding sequential ly composed actior
propert ies from the original framework

1 Intro duct ion

In recent years the study of intell iger
paradigm has been much in the limeli
ployed for all sorts of different tasks u
omy rs required. For example, softwa.
to search the Web for specific infor
also robots can be viewed as obvious
(cf. Johnson 1997). Moreover, there is
to furnish agents with a theoretical
methods from (philosophicai) logic (V
Wooldr idge et  a l . ,  1996, 1gg7; Rao e
ics used for this highlight certain m
vant for describing such autonomous, i
edge, beiief, desire, intention, etc. (Ra<
Levesque, 1990; Singh, Igg4;Wooldr id l
posed such a basic modal logic in whic
knowledge, abilities, results, and oppor
(199aa) ;  van  L inder  e t  a l .  (1998) .  In  s
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