HOMEWORK \# 2 ANSWERS

(a) If $p=r=\frac{1}{6}$ then $A=\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{12} & \frac{1}{4}\end{array}\right)$ and $B=\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{1}{6} & \frac{1}{24} & \frac{13}{24} & \frac{1}{4}\end{array}\right)$. Thus the CDF of A is $\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{1}{6} & \frac{2}{3} & \frac{3}{4} & 1\end{array}\right)$ and the CDF of B is $\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{1}{6} & \frac{5}{24} & \frac{3}{4} & 1\end{array}\right)$ thus B dominates A in the sense of first-order stochastic dominance.
(b) If $s=\frac{1}{3}$ then $B=\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{3}{8} & \frac{1}{24} & \frac{1}{3} & \frac{1}{4}\end{array}\right)$ so that the CDF of B is $\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{3}{8} & \frac{5}{12} & \frac{3}{4} & 1\end{array}\right)$. The CDF of A is $\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ p & p+q & p+q+\frac{1}{12} & 1\end{array}\right)$. Thus, in order for A to dominate B in the sense of first-order stochastic dominance we need: (1) $p \leq \frac{3}{8}$ and (2) $p+q \leq \frac{5}{12}$ with at least one of the two inequalities as a strict inequality. These two inequalities (in particular, the second one) cannot be satisfied, because in order for p and q to make sense it must be that p $+q=1-(1 / 12)-(1 / 4)=8 / 12$.
(c) If $r=\frac{1}{3}$ then $B=\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{1}{3} & \frac{1}{24} & \frac{3}{8} & \frac{1}{4}\end{array}\right)$.
(c.1) The expected value of B is $\frac{89}{3}=29.67$
(c.2) In order for C to be a MPS of B we need v and w to satisfy: (1) $v+w=\frac{1}{72}$ and (2)
$18 v+34 w=\frac{1}{72} 20=\frac{5}{18}$.
(d) If $r=s$ then $B=\left(\begin{array}{cccc}\$ 16 & \$ 20 & \$ 36 & \$ 40 \\ \frac{17}{48} & \frac{1}{24} & \frac{17}{48} & \frac{1}{4}\end{array}\right)$.
(d.1) The expected value of B is $\frac{117}{4}=29.25$
(d.2) In order for D to be a MPS of B we need v and w to satisfy: (1) $x+y=\frac{1}{24}$ and (2) $18 x+34 y=\frac{1}{24} 20=\frac{5}{6}$.

