1. (a) Since the expected value of both lotteries is 40, a risk-neutral person is indifferent between them.
(b) \(C = (40,40) \). See graph below.

(c) \(C \) gives the expected value of \(A \) for sure. Thus a risk-loving person prefers \(A \) to \(C \).
(d) \(C \) gives the expected value of \(B \) for sure. Thus a risk-averse person prefers \(C \) to \(B \).
(e) For Sue the expected utility of \(A \) is equal to 6 and so is the expected utility of \(B \). Thus they lie on the same indifference curve. On the other hand, \(C \) is strictly preferred to both \(A \) and \(B \). See graph below.

(f) For Tom, \(\mathbb{E}[U(A)] = 349.613 \), while \(\mathbb{E}[U(B)] = 339.072 \). Furthermore, by risk aversion, \(C \) is strictly preferred to \(A \). Thus the indifference curves are as follows:
(g) It is $\frac{1}{4} = -\frac{1}{4}$.

(h) At any point (y,z), the slope of Sue’s indifference curve that goes through that point is

$$-\frac{1}{4} \left(\frac{U'(y)}{U'(z)} \right) = -\frac{1}{4} \left(\frac{\sqrt{z}}{\sqrt{y}} \right)$$

Thus (1) at point A the slope is $\frac{1}{8} = -0.125$, (2) at point B it is $\frac{7}{8} = -0.875$, (3) at point C it is $\frac{1}{4} = -0.25$.

(i) At any point (y,z), the slope of Sue’s indifference curve that goes through that point is

$$-\frac{1}{4} \left(\frac{U'(y)}{U'(z)} \right) = -\frac{1}{4} \left(\frac{z}{y} \right)$$

Thus (1) at point A the slope is $\frac{1}{16} = -0.0625$, (2) at point B it is $-\frac{49}{16} = -3.0625$, (3) at point C it is $\frac{1}{4} = -0.25$.

2. (a) $\frac{7}{8}\sqrt{2,500} + \frac{1}{8}\sqrt{900} = 47.5$

(b) The expected value of the no-insurance lottery is $\frac{7}{8}(2,500) + \frac{1}{8}(900) = 2,300$. Thus the equation is $\sqrt{2,300} - r = 47.5$ (the solution is 43.75).

(c) (c.1) If she insures with deductible D then her wealth in the good state is

$$W_g(D) = 2,500 - h = 2,500 - \frac{1,440}{7} + \frac{9}{70} D = \frac{16,060}{7} + \frac{9}{70} D$$

and her wealth in the bad state is

$$W_b(D) = W_g(D) - D = \frac{16,060}{7} - \frac{61}{70} D$$

Thus her expected utility is

$$EU(D) = \frac{7}{8} \left(\frac{16,060}{7} + \frac{9}{70} D \right) + \frac{1}{8} \left(\frac{16,060}{7} - \frac{61}{70} D \right)$$

(c.2) Since $EU(1,000) = 47.78481$ while the expected utility of no insurance is 47.5 she would prefer to insure with a deductible of $1,000$.

(c.3) Since $EU(0) = 47.8987$ and $EU(140) = 47.90143$, she would prefer the contract with deductible 140 to the full-insurance contract.

(c.4) The equation is

$$\frac{d}{dD} EU(D) = 0$$

that is,

$$\frac{9}{160 \sqrt{\frac{16,060}{7} + \frac{9}{70} D}} - \frac{61}{1,120 \sqrt{\frac{16,060}{7} - \frac{61}{70} D}} = 0$$

(the solution is $D = 144.52$).