The thick indifference curves are for type \(b \) and the thin ones for type \(a \).

\(N = (24,000, 36,000) \)

\[
\begin{array}{ccc}
\text{contract} & \text{premium} & \text{deductible} \\
A & h_A = 200 & D_A = 1,200 \\
B & h_B = 400 & D_B = 1,000 \\
C & h_C = 600 & D_C = 0 \\
D & h_D = 300 & D_D = 600 \\
\end{array}
\]

(c) Only the \(b \) types would buy. Thus expected profits are
\[1000 \left[h_{C} - p_{b} \cdot (x - D_{C}) \right] = 20000 \]

(d) Only the \(b \) types would buy and they would all choose contract \(C \). Thus expected profits are 200,000 as in case (c).

(e) Type \(a \) would choose contract \(A \) and type \(b \) would choose contract \(C \). Thus expected profits are
\[1000 \left[h_{A} - p_{a} \cdot (x - D_{A}) \right] + 1000 \left[h_{C} - p_{b} \cdot (x - D_{C}) \right] = 220000 \]

(f) Everybody would choose contract \(D \). Thus expected profits are
\[1000 \left[h_{D} - p_{a} \cdot (x - D_{D}) \right] + 1000 \left[h_{D} - p_{b} \cdot (x - D_{D}) \right] = 30000 \]

(g) The premium, call it \(h_a \), must be such that \(h = p_a \cdot x \). Thus \(h_a = 200 \).

(h) \[1000 \left(h_{a} - p_{a} \cdot x \right) + 1000 \left(h_{a} - p_{b} \cdot x \right) = -200000 . \]