PRACTICE EXAM FOR THE FINAL: ANSWERS

1. (a) $\mathbb{E}[U(A)]=\frac{2}{5} \sqrt{25}+\frac{3}{5} \sqrt{100}=8$
(b) $\mathbb{E}[U(B)]=\frac{2}{5} \sqrt{100}+\frac{3}{5} \sqrt{25}=7$
(c) The slope of the indifference curve through point A, at point A, is

$$
-\frac{p}{1-p}\left(\frac{U^{\prime}(25)}{U^{\prime}(100)}\right)=-\frac{\frac{2}{5}}{\frac{3}{5}}\left(\frac{U^{\prime}(25)}{U^{\prime}(100)}\right)=-\frac{2}{3}\left(\frac{\frac{1}{2 \sqrt{25}}}{\frac{1}{2 \sqrt{100}}}\right)=-\frac{4}{3}
$$

(d) The slope of the indifference curve through point B, at point B, is

$$
-\frac{p}{1-p}\left(\frac{U^{\prime}(100)}{U^{\prime}(25)}\right)=-\frac{2}{3}\left(\frac{\frac{1}{2 \sqrt{100}}}{\frac{1}{2 \sqrt{25}}}\right)=-\frac{1}{3}
$$

(e) It is given by the equation: $\frac{2}{5} \sqrt{x}+\frac{3}{5} \sqrt{y}=8$. Solving for y we get $y=\left(\frac{2 \sqrt{x}}{3}-\frac{40}{3}\right)^{2}$.
(f) It is given by the equation: $\frac{2}{5} \sqrt{x}+\frac{3}{5} \sqrt{y}=7$. Solving for y we get $y=\left(\frac{2 \sqrt{x}}{3}-\frac{35}{3}\right)^{2}$.
2. (a) $\underbrace{3,600-W_{2}}_{h}=1,200-\frac{2}{5} \underbrace{\left(W_{2}-W_{1}\right)}_{d}$. Solving for W_{2} we get $W_{2}=4,000-\frac{2}{3} W_{1}$.
(b) The slope of any isoprofit line is $-\frac{\frac{15}{100}}{1-\frac{15}{100}}=-\frac{15}{85}=-\frac{3}{17}$. Since the slope of the insurance budget line is $-\frac{2}{3} \neq-\frac{3}{17}$, the equation of Part (a) does not correspond to an isoprofit line.
(c) Replacing W_{1} with $(3,600-2,700)=900$ in the equation $W_{2}=4,000-\frac{2}{3} W_{1}$ we get 3,400 which is less than the initial wealth (which is 3,600). Thus the insurance budget line does not go through the no-insurance point.
(d) First of all let us compute the reservation level of utility:

$$
\mathbb{E}[U(N I)]=\frac{15}{100} \sqrt{900}+\frac{85}{100} \sqrt{3,600}=55.5
$$

The existence of contracts on the insurance budget line that yield a utility greater than 55.5 requires that the insurance budget line cross the reservation indifference curve, that is, there needs to be a solution to the following equations (within the range $W_{1} \in[900,3600]$):

$$
W_{2}=4,000-\frac{2}{3} W_{1} \text { and } \frac{15}{100} \sqrt{W_{1}}+\frac{85}{100} \sqrt{W_{2}}=55.5
$$

[There is no solution to the above equations.]
(e) $\underbrace{3,600-W_{2}}_{h}=1,080-\frac{2}{5} \underbrace{\left(W_{2}-W_{1}\right)}_{d}$. Solving for W_{2} we get $W_{2}=4,200-\frac{2}{3} W_{1}$.
(f) Replacing W_{1} with $(3,600-2,700)=900$ in the equation $W_{2}=4,200-\frac{2}{3} W_{1}$ we get 3,600 which is the initial wealth. Thus the insurance budget line does go through the no-insurance point.
(g) We need to compare the slope of the reservation indifference curve at $N I$ to the slope of the insurance budget line. The slope of the reservation indifference curve at $N I$ is

$$
-\frac{p}{1-p}\left(\frac{U^{\prime}(900)}{U^{\prime}(3,600)}\right)=-\frac{3}{17}\left(\frac{\sqrt{3600}}{\sqrt{900}}\right)=-\frac{3}{34}
$$

Thus the insurance budget line is steeper at $N I$ than the reservation indifference curve; it follows that insurance budget line is entirely below the reservation indifference curve (except at point $N I$), that is, there are no contracts on the insurance budget line that Anna prefers to no insurance
3. At a signaling equilibrium the employer's beliefs must be confirmed. Thus Group I workers must choose $\mathrm{y}<a$ (in which case they would choose $\mathrm{y}=0$) and Group II workers must choose $\mathrm{y} \geq a$ (in which case they would choose $\mathrm{y}=a$). For Group I this requires: $6>10+\frac{1}{2} a-4 a$, while for Group II this requires: $10+\frac{1}{2} a-2 a>6$. Both inequalities are satisfied if and only if $\frac{8}{7}<a<\frac{8}{3}$.
4. (a) For the H type expected utility of no insurance is $\frac{1}{3} \ln (6)+\frac{2}{3} \ln (15)=2.4026$. The maximum premium that the H type would be willing to pay for full insurance is the solution to $\ln \left(\frac{15,000-h}{1,000}\right)=2.4026$ which is $\$ 3,947.91$. The monopolist would offer such a contract and its expected profit would be:
per contract: $3,947.91-\frac{1}{3}(9,000)=\$ 947.91$, total profits: $947.91(1,800)=\$ 1,706,238$.
(b) First we need to calculate the average probability of loss \bar{p} :

$$
\bar{p}=\frac{1}{3}\left(\frac{N_{H}}{N_{H}+N_{L}}\right)+\frac{1}{12}\left(\frac{N_{L}}{N_{H}+N_{L}}\right)=\frac{2}{15}
$$

Option 2 is profitable if and only if the reservation indifference curve of the L type is steeper at the no-insurance point than the average zero-profit line, that is, if and only if

$$
\frac{p_{L}}{1-p_{L}}\left(\frac{U^{\prime}(6,000)}{U^{\prime}(15,000)}\right)>\frac{\bar{p}}{1-\bar{p}} \text { that is } \frac{5}{22}>\frac{2}{13} \text { which is true. }
$$

(c) The profit-maximizing contract under Option 2 is given by the solution to the following equations (the first says that the L types are indifferent between insuring and not insuring and the second equation says that, at the offered contract, the slope of the L-type indifference curve is equal to the slope of the average isoprofit line; note that $\left.U^{\prime}(x)=\frac{1}{x}\right)$:

$$
\begin{aligned}
& \frac{1}{12} \ln \left(\frac{15,000-h-d}{1,000}\right)+\frac{11}{12} \ln \left(\frac{15,000-h}{1,000}\right)=\frac{1}{12} \ln \left(\frac{15,000-9,000}{1,000}\right)+\frac{11}{12} \ln \left(\frac{15,000}{1,000}\right) \\
& \frac{\frac{1}{12}}{\frac{11}{12}}\left(\frac{15,000-h}{15,000-h-d}\right)=\frac{2}{\underbrace{1-\bar{p}}_{=\frac{2}{13}}}
\end{aligned}
$$

(d) First calculate the expected utility from now insurance for each type:

Type $\mathrm{H}: \mathbb{E}\left[U_{H}(N I)\right]=\frac{1}{3} \ln (6)+\frac{2}{3} \ln (15)=2.4026$ (this was calculated in part (a))

Type L: $\mathbb{E}\left[U_{L}(N I)\right]=\frac{1}{12} \ln (6)+\frac{11}{12} \ln (15)=2.6317$

- $\mathbb{E}\left[U_{H}\left(C_{H}\right)\right]=\frac{1}{3} \ln (10.8)+\frac{2}{3} \ln (11.4)=2.4156>\mathbb{E}\left[U_{H}(N I)\right]$ and thus $I R_{H}$ is satisfied.
- $\mathbb{E}\left[U_{L}\left(C_{L}\right)\right]=\frac{1}{12} \ln (12.8)+\frac{11}{12} \ln (13)=2.6825>\mathbb{E}\left[U_{L}(N I)\right]$ and thus $I R_{L}$ is satisfied.
- $\mathbb{E}\left[U_{H}\left(C_{L}\right)\right]=\frac{1}{3} \ln (12.8)+\frac{2}{3} \ln (13)=2.6462>\mathbb{E}\left[U_{H}\left(C_{H}\right)\right]$ and thus $I C_{H}$ fails.
- $\mathbb{E}\left[U_{L}\left(C_{H}\right)\right]=\frac{1}{12} \ln (10.8)+\frac{11}{12} \ln (11.4)=2.4291$ and thus $I C_{L}$ is satisfied.
(e) From Part (d) we deduce that both types would choose contract $C_{L}=(h=200, d=2000)$. Thus the expected profit per contract is (recall from Part (b) that the average probability of loss is $\frac{2}{15}$):

$$
200-\frac{2}{15}(9,000-2,000)=\$-733.33 .
$$

Thus total expected profits are $(-733.33)\left(N_{H}+N_{L}\right)=(-733.33)(9,000)=\$-6,599,970:$ a huge loss!
(f) The contract $C_{L}=\left(h_{L}, d_{L}\right)$ targeted to the L types should be such that (1) the L type is indifferent between contract $C_{L}=\left(h_{L}, d_{L}\right)$ and no insurance (this is the first of the two equations below) and (2) the H type is indifferent between C_{H} and C_{L} (this is the second of the two equations below)

$$
\begin{gathered}
\frac{1}{12} \ln \left(\frac{15,000-h_{L}-d_{L}}{1,000}\right)+\frac{11}{12} \ln \left(\frac{15,000-h_{L}}{1,000}\right)=2.6317 \\
\frac{1}{3} \ln \left(\frac{15,000-3,600-600}{1,000}\right)+\frac{2}{3} \ln \left(\frac{15,000-3,600}{1,000}\right)=\frac{1}{3} \ln \left(\frac{15,000-h_{L}-d_{L}}{1,000}\right)+\frac{2}{3} \ln \left(\frac{15,000-h_{L}}{1,000}\right)
\end{gathered}
$$

5. (a) $\frac{2}{5} \sqrt{900-275}+\frac{3}{5} \sqrt{900}=28$. (b) $\frac{1}{10} \sqrt{900-275-78}+\frac{9}{10} \sqrt{900-78}=28.14$.
(c) With full insurance he will not spend money on prevention: $\sqrt{900-90}=28.46$.
(d) First determine what Albert would do. Expected utility without prevention:
$\frac{2}{5} \sqrt{900-50-150}+\frac{3}{5} \sqrt{900-50}=28.08$. Expected utility without prevention: $\frac{1}{10} \sqrt{900-50-150-78}+\frac{9}{10} \sqrt{900-50-78}=27.5$. Thus he would prefer no insurance (with prevention). Hence expected profits are zero (because Albert will not buy insurance).

6 . (a) First determine what Bill will do. Expected utility with no effort: $\frac{1}{2} \sqrt{324}+\frac{1}{2} \sqrt{900}=24$.
Expected utility with effort: $\frac{1}{6}(\sqrt{324}-2)+\frac{5}{6}(\sqrt{900}-2)=26$. Thus the answer is: 26 .
(b) $\frac{1}{6}(1,300-324)+\frac{5}{6}(1,900-900)=996$. (c) First determine what Bill will do. Expected utility with no effort: $\frac{1}{2} \sqrt{400}+\frac{1}{2} \sqrt{484}=21$. Expected utility with effort:
$\frac{1}{6}(\sqrt{400}-2)+\frac{5}{6}(\sqrt{484}-2)=19.6$. Thus the answer is: 21 .
(d) $\frac{1}{2}(1,300-400)+\frac{1}{2}(1,900-484)=1,158$.

