PRACTICE EXAM for the FIRST MIDTERM: ANSWERS

1. If Jane does not buy insurance, with probability 0.8 her wealth will be $\$ 10,000$ (no theft), while with probability 0.2 it will be $\$ 2000$ (the car is stolen). If she buys insurance at premium h her wealth will be $\$(10,000-h)$ with probability 0.8 (no theft), and $\$(10,000-1,000-h)$ with probability 0.2 (the car is stolen). The maximum premium she is willing to pay is the value of h that solves the following equation, where the LHS is Jane's expected utility if she doesn't buy insurance and the RHS is her expected utility if she does:

$$
\begin{gathered}
0.8\left[40(10)-(10)^{2}\right]+0.2\left[40(2)-2^{2}\right]= \\
0.8\left[40\left(10-\frac{h}{1,000}\right)-\left(10-\frac{h}{1,000}\right)^{2}\right]+0.2\left[40\left(9-\frac{h}{1,000}\right)-\left(9-\frac{h}{1,000}\right)^{2}\right]
\end{gathered}
$$

The solution is $\mathrm{h}=1,826.64$. Thus Jane is willing to pay up to $\$ 1826.64$ for the insurance policy.
2. (a) If she doesn't buy insurance then her wealth will be $200,000+120,000=320,000$ if there is no fire (and this happens with probability 0.99) and 200,000 if there is a fire (and this happens with probability 0.01$)$. Thus her expected wealth is $320,000(0.99)+200,000(0.01)=$ 318,800.
(b) If they sign the contract then Carla faces the following lottery:

EVENT	Both houses burn down	Only Carla's house burns down	Only Natasha's house burns down	Neither house burns down
PROBABILITY	$\begin{gathered} (0.01)(0.01) \\ =0.0001 \end{gathered}$	$\begin{gathered} (0.01)(0.99)= \\ 0.0099 \end{gathered}$	$\begin{gathered} (0.99)(0.01)= \\ 0.0099 \end{gathered}$	$\begin{gathered} (0.99)(0.99)= \\ 0.9801 \end{gathered}$
Carla's wealth	200,000	260,000	260,000	320,000

Thus her expected wealth is:
$200,000(0.0001)+260,000(0.0198)+320,000(0.9801)=318,800$, the same as without the contract.
(c) Since her expected wealth is the same with or without the contract, if she is risk-neutral she does not gain by signing the contract (nor does she lose: she is indifferent).
(d) Normalize Carla's utility function so that $\mathrm{U}(200,000)=0, \quad \mathrm{U}(260,000)=a$ and $\mathrm{U}(320,000)=1$ (with $0<a<1)$. Then her expected utility without the contact is:

$$
0.01(0)+0.99(1)=0.99
$$

(e) Her expected utility with the contract is:

$$
0.0001(0)+0.0198(a)+0.9801(1)=0.0198 a+0.9801 \text {. }
$$

(f.1) From (d) and (e) we deduce that she is better off with the contract if and only if $0.0198 a+0.9801>0.99$,
that is, if and only if

$$
a>0.5 .
$$

Thus, since $a=0.6$, she is better off with the contract.
(f.2) For a risk-averse person the utility of the expected value of a lottery is greater than the expected utility of the lottery. Let us construct a lottery with prizes 200,000 [with probability $(1-\mathrm{p})$] and 320,000 [with probability p] whose expected value is 260,000 :

$$
(1-p) 200,000+p 320,000=260,000
$$

Solving for p we get: $p=0.5$. Now, $\mathrm{U}(260,000)=0.6$, while denoting by A is the lottery $\left(\begin{array}{cc}320,000 & 200,000 \\ 0.5 & 0.5\end{array}\right), \mathrm{EU}(\mathrm{A})=0.5 \mathrm{U}(200,000)+0.5 \mathrm{U}(320,000)=0.5(0)+0.5(1)=0.5$.
Thus we have that the utility of the expected value of A is greater than the expected utility of A, hence Carla is risk averse.

3. (a)

PRIZE	$\$ 2,000$	$\$ 4,000$	$\$ 8,000$	$\$ 16,000$	$\$ 32,000$	$\$ 64,000$	$\$ 0$
	H	TH	TTH	TTTH	TTTTH	TTTTTTH	TTTTTTT
	COIN SEQUENCE	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$

(b) The expected prize is:

$$
\frac{1}{2} 2,000+\frac{1}{4} 4,000+\frac{1}{8} 8,000+\frac{1}{16} 16,000+\frac{1}{32} 32,000+\frac{1}{64} 64,000=\$ 6,000 .
$$

Since it costs $\$ 5,000$ to play the game, the expected net gain is $\$ 1,000$.
(c) If you don't enter the casino, your utility is $\sqrt{15000}=122.474$

If you enter (by paying $\$ 5,000$) and play the game, your expected utility is:
$\frac{1}{2} \sqrt{12,000}+\frac{1}{4} \sqrt{14,000}+\frac{1}{8} \sqrt{18,000}+\frac{1}{16} \sqrt{26,000}+\frac{1}{32} \sqrt{42,000}+\frac{1}{64} \sqrt{74,000}+\frac{1}{64} \sqrt{10,000}=123.494$
(note: the last term in the sum is for the case where the outcome is TTTTTT and you are left with the initial $\$ 15,000$ minus the price of $\$ 5,000$ you paid to play).

Thus you should play the game.
4. Suppose Peter does satisfy the axioms of expected utility and let U be his utility-of-money function, normalized so that $\mathrm{U}(5000)=1$ and $\mathrm{U}(0)=0$. Let $\mathrm{U}(1000)=\mathrm{p}$. Then $0<\mathrm{p}<1$. Now, $\mathrm{EU}(\mathrm{A})=\mathrm{p}, \mathrm{EU}(\mathrm{B})=0.1(1)+0.89(\mathrm{p})+0.01(0)=0.1+0.89 \mathrm{p}, \mathrm{EU}(\mathrm{C})=0.11 \mathrm{p} \quad$ and $\mathrm{EU}(\mathrm{D})=$ 0.1. Then $\mathrm{EU}(\mathrm{A})>\mathrm{EU}(\mathrm{B})$ if and only if $\mathrm{p}>0.1+0.89 \mathrm{p}$, i.e. if and only if $\mathrm{p}>\frac{10}{11}$. But if p $>\frac{10}{11}$ then $\mathrm{EU}(\mathrm{C})=0.11 \mathrm{p}>0.11 \frac{10}{11}=0.1=\mathrm{EU}(\mathrm{D})$. Thus if Peter satisfies the axioms of expected utility and prefers A to B then he must also prefer C to D. Hence he does not satisfy the axioms of expected utility.

