Department of Economics, University of California, Davis

Ecn 103 - Uncertainty and Information - Professor Giacomo Bonanno

HOMEWORK \# 2 (for due date see the web page)

1. Consider the following money lotteries:

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
\$ 16 & \$ 20 & \$ 36 & \$ 40 \\
p & q & \frac{1}{12} & \frac{1}{4}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
\$ 16 & \$ 20 & \$ 36 & \$ 40 \\
r & \frac{1}{24} & s & \frac{1}{4}
\end{array}\right), \\
& C=\left(\begin{array}{cccccc}
\$ 16 & \$ 18 & \$ 20 & \$ 34 & \$ 36 & \$ 40 \\
\frac{1}{3} & v & \frac{1}{36} & w & \frac{9}{24} & \frac{1}{4}
\end{array}\right), \quad D=\left(\begin{array}{ccccc}
\$ 16 & \$ 18 & \$ 34 & \$ 36 & \$ 40 \\
\frac{17}{48} & x & z & \frac{17}{48} & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

(a) Suppose that $p=\frac{1}{6}$ and $r=\frac{1}{6}$. What can you say about how A and B relate to each other in terms of first-order stochastic dominance?
(b) Ignore the values in Part (a) and suppose now that $s=\frac{1}{3}$. Write inequalities need to be satisfied in order for A to dominate B in the sense of first-order stochastic dominance. Can these inequalities be satisfied?
(c) Ignore the values in Parts (a)-(b) and suppose now that $r=\frac{1}{3}$.
(c.1) What is the expected value of lottery B ?
(c.2) Write two equations that need to be satisfied in order for C to be a mean-preserving spread of B. No need to solve the equations.
(d) Ignore the values in Parts (a)-(c) and suppose now that $r=s$.
(d.1) What is the expected value of lottery B ?
(d.2) Write two equations that need to be satisfied in order for D to be a mean-preserving spread of B. No need to solve the equations.

