First some notation. Let \(f(x) \) be a real-valued function; then its first derivative is denoted by \(f'(x) \) or \(\frac{d}{dx} f(x) \) and its second derivative by \(f''(x) \) or \(\frac{d^2}{dx^2} f(x) \).

1. Let \(f(x) = 120 - \left(\frac{x}{4}\right)^2 \). (a) Calculate \(f(20) \). (b) Calculate \(f'(x) \). (c) Calculate \(f'(20) \).
 (d) Calculate \(f''(x) \). (e) Calculate \(f''(20) \).

2. Let \(f(x) = 6x^3 \). (a) Calculate \(f(3) \). (b) Calculate \(f'(x) \). (c) Calculate \(f'(3) \).
 (d) Calculate \(f''(x) \). (e) Calculate \(f''(3) \).

3. Let \(f(x) = 12\sqrt{x} \). (a) Calculate \(\frac{d}{dx} f(x) \). (b) Calculate \(\frac{d^2}{dx^2} f(x) \).

4. Let \(f(x) = 2 \ln \left(\frac{x}{2}\right) \), where \(\ln \) denotes the natural logarithm (that is, the logarithm to the base \(e \)).
 (a) Calculate \(\frac{d}{dx} f(x) \). (b) Calculate \(\frac{d^2}{dx^2} f(x) \).

5. Let \(f(x) = x(60 - 2x) - 4x \). Find the value of \(x \) that maximizes the function \(f \).

6. Let \(f(x) = 200 - \left(\frac{x}{2}\right)^2 \). (a) Draw the graph of the function \(f \) for \(x \in [0, 400] \).
 (b) Write the equation of the straight line that is tangent to the graph of \(f \) at the point \(x = 100 \).