1. (a) Barbara is facing the lottery \[\begin{bmatrix} 2,400 & 3,600 \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix} \] whose expected value is \(\frac{1}{4} 2400 + \frac{3}{4} 3600 = 3,300 \). Being risk-averse she strictly prefers $3,300 for sure to facing the lottery. Thus if \(x = 300 \) and \(y = 1,200 \) then the contract guarantees her a wealth of $3,300 and she is better off. If Anton does not sign the contract his wealth is $4,000. If he signs the mentioned contract then he faces the lottery \[\begin{bmatrix} 3,100 & 4,300 \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix} \] whose expected value is \(\frac{1}{4} 3,100 + \frac{3}{4} 4,300 = 4,000 \). Being risk neutral he is indifferent between signing and not signing the contract.

(b) The lottery she is facing is \(\begin{bmatrix} 3,600 & 2,400 \\ 0.75 & 0.25 \end{bmatrix} \) whose expected value is 3,300. The expected utility of the lottery is \(0.75 \sqrt{3700} + 0.25 \sqrt{2500} = 58.12 \). The risk premium is given by the solution to \(\sqrt{3300 + 100 - r} = 58.12 \) which is $21.98.

2. (a)

(b) \(\frac{99}{100} (220,000) + \frac{1}{100} (60,000) = 218,400 \).

(c) \(\frac{99}{100} (218,500) + \frac{1}{100} (198,500) = 218,300 \).

(d) \(1,500 - \frac{1}{100} (160,000 - 20,000) = 100 \).

(e) The deductible of contract B is the solution to \(100 = 800 - \frac{1}{100} (160,000 - D_B) \) which is \(D_B = 90,000 \). See the above diagram.
(f) The slope of any isoprofit line is \(\frac{-1}{\frac{100}{99}} = -\frac{1}{99} \).

(g) It is the straight line with slope \(-\frac{1}{99}\) that goes through the NI point. Thus it is of the form \(W_2 = a - \frac{1}{99}W_1 \). Replacing the coordinates of the NI point we get \(220,000 = a - \frac{1}{99}60,000 \) and solving for \(a \) we get \(W_2 = 220,606.61 - \frac{1}{99}W_1 \).

(g) Contract B involves the same expected wealth as contract A, namely $218,300, which is less than the expected wealth from no insurance. Thus a risk neutral person would prefer not to insure. Hence Sam will not buy contract B.

3. (a) Suppose that an individual satisfies the axioms of expected utility. Let \(U \) be her normalized von Neumann-Morgenstern utility function. Then, assuming that she prefers more money to less, \(U(4,000) = 1 \), \(U(3,000) = a \) and \(U(0) = 0 \), with \(0 < a < 1 \). Thus expected utility of the four lotteries is:

\[
EU(A) = \frac{20}{100}, \quad EU(B) = \frac{25}{100}a, \quad EU(C) = \frac{80}{100} \quad \text{and} \quad EU(D) = a.
\]

If she chooses \(A \) over \(B \) then \(EU(A) = \frac{20}{100} > EU(B) = \frac{25}{100}a \), that is, \(a < \frac{20}{25} = \frac{80}{100} \), so that she must prefer \(C \) to \(D \). Thus choosing \(A \) over \(B \) and \(D \) over \(C \) or choosing \(B \) over \(A \) and \(C \) over \(D \) reveals a violation of expected utility. Thus 44+5=49 people for sure did not satisfy the axioms of expected utility.

(b) A risk neutral person ranks lotteries based on their expected values. Now,

\[
E_A = \frac{20}{100} \times 4,000 = 800, \quad E_B = \frac{25}{100} \times 3,000 = 750, \quad E_C = \frac{80}{100} \times 4,000 = 3,200 \quad \text{and} \quad E_D = 3,000.
\]

Thus he will rank \(A \) above \(B \) and \(C \) above \(D \).

(c) If \(U(m) = \ln(m) \) and your initial wealth is $21,000, then

\[
EU(A) = \frac{20}{100}\ln(25,000) + \frac{80}{100}\ln(21,000) = 9.987,
\]

\[
EU(B) = \frac{25}{100}\ln(24,000) + \frac{75}{100}\ln(21,000) = 9.985,
\]

\[
EU(C) = \frac{80}{100}\ln(25,000) + \frac{20}{100}\ln(21,000) = 10.092 \quad \text{and}
\]

\[
EU(D) = \ln(24,000) = 10.085.
\]

Thus you will choose \(A \) over \(B \) and \(C \) over \(D \).