1. (a) \(W_0 = 7,300, \ell = 7,300 - 2,500 = 4,800 \). Since the slope of an isoprofit line is \(-\frac{p}{1-p}\)
we must solve \(-\frac{p}{1-p} = -\frac{1}{4}\), that is, \(4p = 1 - p\), which gives \(p = \frac{1}{5} = 0.2 \).

(b) \(NI = \left(\frac{7,300}{\frac{4}{5}}, \frac{2,500}{\frac{1}{5}} \right) \) so that \(E[NI] = \frac{4}{5}7,300 + \frac{1}{5}2,500 = 6,340 \).

(c) Since the isoprofit line that goes through \(NI \) is the zero-profit line, \(\pi(C) = 0 \).

(d) Starting from \(NI \), if you reduce the horizontal coordinate to 0 (that is, by 2,500) then the
vertical coordinate must be increased by \(\frac{1}{4}2,500 = 625 \) and thus to
\(7,300 + 625 = 7,925 \) (giving the vertical intercept). Thus the equation of the line is
\(W_2 = 7,925 - \frac{1}{4}W_1 \).

(e) Since point \(C \) is on the 45° line, its coordinates must be equal: \(W_1^C = W_2^C \). Using this fact in
the equation we write \(W_1^C = 7,925 - \frac{1}{4}W_1^C \) and solve for \(W_1^C \) to get \(W_1^C = 6,340 \). Hence
\(C = (6340, 6340) \). The premium of contract \(C \) is \(7,300 - 6,340 = 960 \) and the deductible is
0 (it is a full-insurance contract). Alternatively, since \(\pi(C) = 0 \) and \(C \) is a full-insurance
contract, then the premium must be equal to the expected loss \(p\ell = \frac{1}{5}4,800 = 960 \).

(f) \(h_A = 7,300 - 6,500 = 800, D_A = 6,500 - 5,500 = 1,000 \).

(g) Since \(B \) is on the isoprofit line that goes through \(A \), \(\pi(B) = \pi(A) \). Now, using (f),
\[\pi(A) = h_A - p(\ell - D_A) = 800 - \frac{1}{5}(4,800 - 1,000) = 40. \]

(h) Starting from \(A \) if the horizontal co-ordinate is reduced to 0 (thus by 5,500) then the
vertical coordinate must be increased by \(\frac{1}{4}5,500 = 1,375 \) to 6,500 + 1,375 = 7,875 (this is
the vertical intercept). Thus the equation is \(W_2 = 7,875 - \frac{1}{4}W_1 \).

(i) Since point \(B \) is on the 45° line, its coordinates must be equal: \(W_1^B = W_2^B \); thus from
\(W_1^B = 7,875 - \frac{1}{4}W_1^B \) solve for \(W_1^B \) to get \(W_1^B = 6,300 \). Hence \(B = (6300, 6300) \). Thus the
premium of contract \(B \) is \(7,300 - 6,300 = 1,000 \) and the deductible is 0. Alternatively, since
\(B \) is a full-insurance contract, the profit from contract \(B \) is \(h_B - p\ell \) and by (g) this is equal
to 40; thus solving \(h_B = \frac{1}{5}4,800 = 40 \) we get \(h_B = 1,000 \).

(j) \(A = \left(\frac{5,500}{\frac{4}{5}}, \frac{6,500}{\frac{1}{5}} \right), B = \left(\frac{6,300}{\frac{4}{5}}, \frac{6,300}{1} \right) \). \(E[A] = \frac{4}{5}6,500 + \frac{1}{5}5,500 = 6,300 = E[B] \).

(k) No Insurance and contract \(C \) have the same expected value, namely 6,340.

(l) \(B \) gives the expected value of \(A \) for sure.

(m) She prefers $6,300 for sure to \(NI \), whose expected value is $6,340. Since more money is
better than less, $6,340 is better than $6,300. Hence she must prefer $6,340 to \(NI \) and thus
is risk averse.
2. (a) Her normalized utility function is \(z_1 + z_2 z_3 \) with \(0 < a < 1 \). The expected utility of lottery \(O \) is \(\frac{96}{100} \) while the expected utility of \(N \) is \(a \). Hence, if she decides to have the operation, it must be that \(a < \frac{96}{100} \).

(b) This is a meaningless question, since the notion of risk aversion applies only to money lotteries and the two lotteries \(O \) and \(N \) are not money lotteries. Thus the answer is "we cannot tell".

(c) \(1 2 3 4 5 \): No insurance, operation, success \(($9,000, H) \)

\(1 2 3 4 5 \): No insurance, no operation \(($9,000, P) \)

(d) \(O \) and \(N \) are as before: \(O = \left(\frac{z_1}{96} \frac{z_3}{100} \right) \), \(N = \left(\frac{z_2}{4} \right) \). \(I = \left(\frac{z_4}{96} \frac{z_5}{100} \right) \).

(e) We don’t know how she ranks \(O \) versus \(N \) (because we don’t know whether \(U(z_2) \) is greater than, less than, or equal to, \(\frac{96}{100} \)). However, from her ranking we know that \(U(z_4) > U(z_2) \) and thus the expected utility of \(I \) is certainly higher than the expected utility of \(N \). Hence she will have the operation; what we don’t know is whether she will also buy insurance, because we don’t know how she ranks \(I \) versus \(O \).

(f) Her answer means that she prefers \(I \) to \(O \). As in part (a), \(U(z_1) = 1 \) and \(U(z_3) = 0 \) so that \(\mathbb{E}[U(O)] = \frac{96}{100} \). On the other hand, \(\mathbb{E}[U(I)] = \frac{96}{100} U(z_4) + \frac{4}{100} U(z_5) \). Thus it must be that \(\frac{96}{100} U(z_4) + \frac{4}{100} U(z_5) > \frac{96}{100} \), that is, \(24 U(z_4) + U(z_5) > 24 \).

(g) From \(\left(\frac{z_3}{0.08} \frac{z_1}{0.92} \right) \sim z_5 \) we get \(U(z_5) = 0.92 \) and from \(\left(\frac{z_5}{\frac{3}{8}} \frac{z_1}{\frac{5}{8}} \right) \sim z_4 \) we get \(U(z_4) = \frac{5}{8} 0.92 + \frac{3}{8} 1 = 0.97 \). Thus \(\mathbb{E}[U(I)] = \frac{96}{100} 0.97 + \frac{4}{100} 0.92 = 0.968 > 0.96 = \mathbb{E}[U(O)] \). Hence her answer is indeed consistent.

(h) It follows from the above that Amy will buy insurance and have the operation (since \(I \succ O \) and \(I \succ N \)).

3. First of all, note that \(\mathbb{E}[L] = \mathbb{E}[M] = 250 \).

(a) Ann prefers \(M \) to $258 for sure and she prefers $258 to $250. Thus, by transitivity, she must prefer \(M \) to $250, that is, \(M \) to \(\mathbb{E}[M] \) for sure. Hence she is risk loving.

(b) Bruno prefers $245 for sure to \(L \) and prefers $250 to $245. Thus, by transitivity, he must prefer $250 to \(L \), that is, \(\mathbb{E}[L] \) for sure to \(L \). Hence he is risk averse.

(c) All we can say for sure is that Charlie is not risk neutral, because a risk-neutral person would be indifferent between \(L \) and \(M \).