ECN 103Professor Giacomo BonannoSECOND MIDTERM EXAM:ANSWERS for VERSION 2

1. First of all, we need the probabilities in lottery *B* to add up to 1: $\frac{1}{24} + 3p + \frac{1}{12} = 1$. Solving this

equation we get that $p = \frac{7}{24}$ so that $B = \begin{pmatrix} \$30 & \$36 & \$44 & \$48 \\ \frac{1}{24} & \frac{14}{24} & \frac{2}{24} & \frac{7}{24} \end{pmatrix}$. Two equations need to be satisfied in order for *A* to be a mean-preserving spread of *B*; the first ensures that the probabilities in lottery *B* add up to 1 and the second ensures that the expected value of *A* is equal to the expected value of *B*: $r + s = \frac{14}{24} = \frac{7}{12}$ and $32r + 40s = \frac{7}{12}36 = 21$. [The second equation can also be written as follows, since $E[B] = \frac{479}{12}$: $\frac{2}{48}30 + 32r + 40s + \frac{4}{48}44 + \frac{14}{48}48 = \frac{479}{12}$.]

- **2.** (a) Since $\mathbb{E}[A] = \frac{2}{3}36 + \frac{1}{3}81 = 51$ and $\mathbb{E}[B] = \frac{3}{5}16 + \frac{2}{5}121 = 58$, a risk-neutral person prefers *B* to *A*.
 - (b) Since Amy is risk averse she prefers \$51 for sure (that is, $\mathbb{E}[A]$ for sure) to A.
 - (c) Since $\mathbb{E}[U(A)] = \frac{2}{3}6 + \frac{1}{3}9 = 7$ and $\mathbb{E}[U(B)] = \frac{3}{5}4 + \frac{2}{5}11 = 6.8$ Amy prefers A and B.
 - (d) and (e) See the following figures. Note that $\mathbb{E}[C] = 53$, $\mathbb{E}[D] = 50$ and $\mathbb{E}[U(C)] = \mathbb{E}[U(D)] = 7$

(f) The slope if the same at every point and equal to $-\frac{\frac{1}{2}}{1-\frac{1}{2}} = -1$.

- (g) Recall that $U'(m) = \frac{1}{2\sqrt{m}}$. The slope at *C* is $-\frac{U'(81)}{U'(25)} \left(\frac{p}{1-p}\right) = -\frac{\frac{1}{2\sqrt{81}}}{\frac{1}{2\sqrt{25}}} (1) = -\frac{5}{9}$ and the slope at *D* is $-\frac{U'(36)}{U'(64)} \left(\frac{p}{1-p}\right) = -\frac{\frac{1}{2\sqrt{36}}}{\frac{1}{2\sqrt{64}}} (1) = -\frac{4}{3}$.
- (h) Since point F is on the 45° line, the two slopes are the same, namely -1.

3. It must be that *A* dominates *B* in the sense of First-Order stochastic dominance. There are only two values of *x* and *y* that yield that: $x = \frac{1}{2}$ and y = 0. Explanation: first of all, in order for B to be a lottery we need the probabilities to add up to 1, which requires $x + y = \frac{1}{2}$ or $y = \frac{1}{2} - x$. Thus we have:

	(\$15	\$16	\$20	\$28	\$35	\$45)	
P_A :	$\frac{2}{10}$	0	$\frac{6}{10}$	0	$\frac{1}{10}$	$\frac{1}{10}$:	=A
cdf_A :	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{8}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	1)	
	(\$15	\$16	\$20	\$28	\$35	\$45`)
P_B :	$\frac{2}{10}$	X	$\frac{1}{10}$	$y = \frac{1}{2} - x$	$\frac{1}{10}$	$\frac{1}{10}$	= B
cdf_{B} :	$\frac{2}{10}$	$\frac{2}{10} + x$	$\frac{3}{10} + x$	$\frac{8}{10}$	$\frac{9}{10}$	1)

In order for *A* to dominate *B* in the sense of First-Order stochastic dominance, it cannot be that x = 0, because then $cdf_A(\$20) = \frac{6}{10} > cdf_B(\$20) = \frac{3}{10}$. So it must be that x > 0. Then we have that $cdf_A(\$16) < cdf_B(\$16)$, which is fine, but we also need $cdf_A(\$20) = \frac{8}{10} \le cdf_B(\$20) = \frac{3}{10} + x$ that is, $x \ge \frac{1}{2}$ and this, together with $x + y = \frac{1}{2}$ gives: $x = \frac{1}{2}$ and y = 0.