## PRACTICE EXAMS for the SECOND MIDTERM <br> Note: a typical exam would consist of three questions. The extra question is for additional practice.

1. Jennifer has the following von Neumann-Morgenstern utility-of-money function:

$$
U(\$ x)=200-\left(12-\frac{x}{1,000}\right)^{2}
$$

(a) What is Jennifer's attitude to risk?
(b) Calculate the Arrow-Pratt measure of absolute risk aversion for Jennifer's for $x=4,000$ and for $x=6,000$.
Jennifer's friend, Bob, is convinced that tomorrow it will rain while Jennifer thinks that there is a $75 \%$ probability that it will not rain. Bob is willing to take any bet and lets Jennifer name the stake. If the stake is, say, $\$ 3000$, then Bob will pay $\$ 3000$ to Jennifer if it does not rain and Jennifer will pay $\$ 3000$ to Bob if it rains. Jennifer's wealth is $\$ 6000$, and therefore she can bet any amount up to $\$ 6000$.
(c) According to her beliefs, what is Jennifer's expected utility if she bets $\$ 2,000$ ?
(d) According to her beliefs, what is her utility if she doesn't bet?
(e) How much will she bet?
(f) By how much does her utility go up, compared to not betting, if she bets the optimal amount?
(g) How much would she bet if she thought there were a $50 \%$ probability of rain? [Hint: before engaging in complex calculations, see if you can make use of one of the answers for the previous parts.]
2. An insurance company offers a menu of contracts of the form (h,d) where $d$ is the deductible and h is the premium, calculated according to the following formula (where $\ell$ is the potential loss, $p$ the probability of loss and $c$ is a positive constant):

$$
h=p(\ell-d)+c
$$

That is, the individual chooses the deductible $d$ and then the corresponding premium is calculated according to the above formula.
(a) Translate the above equation into an equation in terms of wealth levels (in the wealth diagram).
(b) If a risk-averse individual decides to purchase insurance, will she choose a partialinsurance contract or a full insurance contract? [Fully explain your answer.]
3. Consider the following money lotteries:

$$
L=\left(\begin{array}{ccc}
\$ 100 & \$ 36 & \$ 25 \\
\frac{2}{5} & \frac{1}{5} & \frac{2}{5}
\end{array}\right) \quad M=\left(\begin{array}{ccc}
\$ 100 & \$ 36 & \$ 25 \\
\frac{1}{5} & \frac{2}{5} & \frac{2}{5}
\end{array}\right) \quad N=\left(\begin{array}{ccc}
\$ 100 & \$ 36 & \$ 25 \\
\frac{1}{5} & \frac{1}{10} & \frac{7}{10}
\end{array}\right)
$$

For every pair $(X, Y)$ of the above lotteries state if (1) X dominates Y in the sense of first-order stochastic dominance or (2) Y dominates X in the sense of first-order stochastic dominance or (3) neither.
4. Consider the following money lotteries:

$$
A=\left(\begin{array}{cccc}
\$ 2 & \$ 6 & \$ 8 & \$ 12 \\
\frac{1}{16} & \frac{3}{16} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\$ 4 & \$ 8 & \$ 12 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right) \quad C=\left(\begin{array}{cccc}
\$ 4 & \$ 8 & \$ 10 & \$ 16 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{3} & \frac{1}{6}
\end{array}\right)
$$

For every pair $(X, Y)$ of the above lotteries state if (1) X is a mean-preserving spread of Y or (2) Y is a mean-preserving spread of X or (3) neither.

