

$$P'_{s} = U(c) = P_{u} (X_{1} - w_{1}^{c}) + (i - p_{u}) (X_{2} - w_{2}^{c})$$

$$= \underbrace{P_{u} X_{1} + (i - p_{u}) X_{2}}_{\widehat{w}} - \left[\underbrace{P_{u} w_{1}^{c} + (i - p_{u}) w_{2}^{c}}_{\widehat{w}} \right]$$

$$= \underbrace{P_{u} (X_{1} - \widehat{w}) + (i - p_{u}) (X_{2} - \widehat{w})}_{= \underbrace{P_{u} X_{1} + (i - p_{u}) X_{2}}_{P} - \widehat{w}}$$

$$D \sim_{P} C$$

Identify those contracts that are

- 1. individually rational and
- 2. Pareto efficient.

A contract *C* is **individually rational** if, for each party, signing the contract is at least as good as not signing it.

 \hat{r}_P = reservation utility of the Principal

 \hat{r}_A = reservation utility of the Agent.

C is individually rational if

(1) $E U_P(c) \geq \hat{r}_P$

(2)
$$\max \{ E u_{n}^{A}(c), E u_{e}^{A}(c) \} \geq \hat{r}_{A}$$

Contract C is **Pareto efficient** if, for every other contract D,

• if $EU_{p}(D) > EU_{p}(C)$ then $\max\{EU_{n}^{1}(C), EU_{e}^{1}(C)\} >$ $D >_{p} C$ $C >_{A} D$ $\{EU_{n}^{1}(D), EU_{e}^{1}(D)\}$ • $D >_{A} C$ then $C >_{p} D$

To simplify, assume that $\hat{r}_P = \hat{r}_A = 0$ so that every contract (w_1, w_2) with $0 \le w_1 \le X_1$ and $0 \le w_2 \le X_2$ is individually rational. This assumption allows us to concentrate on the issue of Pareto efficiency.

Fix any contract C in the shaded area. Then, for each individual, there are two indifference curves that go through point C: one corresponding to the case where the Agent the Agent chooses e_L and the other corresponding to the case where the Agent chooses e_H .

$$C_{H} = high effort or effort$$

 $Page 1 of 16$
 $P_{1}^{L} > P_{1}^{H}$

Let us begin with the risk-neutral Principal. Let $C = (w_1^C, w_2^C)$ and $D = (w_1^D, w_2^D)$ be two contracts. Let $\overline{X}_L = p_1^L \overline{X}_1 + (1 - p_1^L) X_2$ and $\overline{X}_H = p_1^H X_1 + (1 - p_1^H) X_2$

Conditional on the Agent choosing e_L, the Principal is indifferent between C and D if and only if

• Conditional on the Agent choosing e_H , the Principal is indifferent between C and D if and only if

slope
$$-\frac{P_1^{+}}{1-P_1^{+}}$$

$$P_{1}^{L}$$
 P_{1}^{H}

 $\overline{1-p_{I}L}$ $\overline{1-p_{I}H}$

DL DH

Now the Agent, who is risk averse with utility-of-money function $u_A(m,e) = \begin{cases} U_A(m) & \text{if } e = e_L \\ U_A(m) - c & \text{if } e = e_H \end{cases}$ with c > 0. Through any contract $C = (w_1^C, w_2^C)$ there are two indifference curves:

- a steeper one, corresponding to the case where the Agent exerts low effort e_L , whose slope at *C* is
- a less steep one, corresponding to the case where the Agent exerts high effort e_{H} , whose slope at *C* is

How can we tell which of two contracts, *C* and *D*, gives higher utility?

For the Agent the direction of increasing utility is the North-East direction.

For the Principal the direction of increasing utility is the South-West direction.

How do we determine which contracts are Pareto efficient?

So Ager chooses for t \hat{J} Step 1. Pick an arbitrary contract $\hat{D} = (\hat{m}, \hat{m})$ on the 45° line and let \hat{u} be the Agent's utility from this contract. Then we know that \hat{A} choose \hat{C}_{1}

Step 2. Determine the set of contracts that give the Agent utility \hat{u} when she chooses the best level of effort for each contract. Call this set the \hat{u} -utility locus for the Agent.

Step 3. Find which contracts on the \hat{u} -utility locus are Pareto efficient.

The indifference curve corresponding to e_{H} that goes through contract \hat{D} corresponds to a level of utility less than \hat{u} (in fact, equal to $\hat{u} - c$).

