

Identify those contracts that are

- 1. individually rational and
- 2. Pareto efficient.

A contract *C* is **individually rational** if, for each party, signing the contract is at least as good as not signing it.

 \hat{r}_P = reservation utility of the Principal \hat{r}_A = reservation utility of the Agent.

C is individually rational if

(1)

(2)

Contract C is **Pareto efficient** if, for every other contract D,

To simplify, assume that $\hat{r}_P = \hat{r}_A = 0$ so that every contract (w_1, w_2) with $0 \le w_1 \le X_1$ and $0 \le w_2 \le X_2$ is individually rational. This assumption allows us to concentrate on the issue of Pareto efficiency.

Fix any contract *C* in the shaded area. Then, for each individual, there are two indifference curves that go through point *C*: one corresponding to the case where the Agent chooses e_L and the other corresponding to the case where the Agent chooses e_H .

Let us begin with the risk-neutral Principal. Let $C = (w_1^C, w_2^C)$ and $D = (w_1^D, w_2^D)$ be two contracts. Let $\overline{X}_L = p_1^L X_1 + (1 - p_1^L) X_2$ and $\overline{X}_H = p_1^H X_1 + (1 - p_1^H) X_2$

• Conditional on the Agent choosing e_L , the Principal is indifferent between C and D if and only if

• Conditional on the Agent choosing e_H , the Principal is indifferent between C and D if and only if

Now the Agent, who is risk averse with utility-of-money function $u_A(m,e) = \begin{cases} U_A(m) & \text{if } e = e_L \\ U_A(m) - c & \text{if } e = e_H \end{cases}$ with c > 0. Through any contract $C = (w_1^C, w_2^C)$ there are two indifference curves:

- a steeper one, corresponding to the case where the Agent exerts low effort e_L , whose slope at *C* is
- a less steep one, corresponding to the case where the Agent exerts high effort e_{H} , whose slope at *C* is

How can we tell which of two contracts, *C* and *D*, gives higher utility?

For the Agent the direction of increasing utility is the North-East direction.

For the Principal the direction of increasing utility is the South-West direction.

How do we determine which contracts are Pareto efficient?

Step 1. Pick an arbitrary contract $\hat{D} = (\hat{m}, \hat{m})$ on the 45° line and let \hat{u} be the Agent's utility from this contract. Then we know that

Step 2. Determine the set of contracts that give the Agent utility \hat{u} when she chooses the best level of effort for each contract. Call this set the \hat{u} -utility locus for the Agent.

Step 3. Find which contracts on the \hat{u} -utility locus are Pareto efficient.

The indifference curve corresponding to e_H that goes through contract \hat{D} corresponds to a level of utility less than \hat{u} (in fact, equal to $\hat{u} - c$).

If the Agent chooses e_H with both contracts A and B, then both Principal and Agent strictly prefer B to A.

Page 13 of 16

If the Agent chooses e_L with both contracts E and F, then both Principal and Agent strictly prefer E to F.

The only two candidates for Pareto efficiency on the \hat{u} -utility locus are *C* and \hat{D} . Which of the two is Pareto efficient depends on how the Principal ranks them:

- if $\hat{D} \succ_p C$
- if $C \succ_P \hat{D}$