ISOPROFIT LINES
Assume that the insurance company is risk neutral so that it considers selling an insurance contract $C=(h, d)$, corresponding to the lottery $C=\left(\begin{array}{cc}h-(L-d) & h \\ p & 1-p\end{array}\right)$, as equivalent to getting its expected value for sure: $\mathbb{E}[C]=p[h-(L-d)]+(1-p) h=h-p(L-d)=\underbrace{h-p L+p d}$
a single
We denote the expected profit from $/$ contract (h, d) by $\pi(h, d)$. Thus

$$
\pi(h, d)=h-p(L-d)=h-p L+p d
$$

If the contract is expressed as a point $\left(W_{1}, W_{2}\right)$ in wealth space then

$$
\begin{array}{rl}
h=w-W_{2} & d=w_{2}-w_{1} \\
\Pi & =\underbrace{h}_{W_{-}}-p L+p w_{w}^{d}=W-w_{2}-p L+p\left(w_{2}-W_{1}\right) \\
& =W-p L-(1-p) W_{2}-p W_{1}
\end{array}
$$

W_{2} (good state)

Suppose that $p=\frac{1}{10}$. What is $\pi(A)$? What is $\pi(B)$?

$$
\begin{aligned}
& \text { probability } \\
& \text { of loss }
\end{aligned}
$$

$$
\left(W-p L-(1-p) W_{2}-p W_{1}\right.
$$

$$
\pi(A)=40,000-\frac{1}{10} 28,000-\frac{9}{10} 34,000-\frac{1}{10} 18,000
$$

$$
=4,800
$$

$$
\begin{aligned}
& \pi(B)=18,000-\frac{1}{10} 28000=18,000-2800=15,200 \\
& \pi(B)=40000-\frac{1}{10} 28000-\frac{9}{10} 22000-\frac{1}{10} 22,000=15,200
\end{aligned}
$$

An isoprofit line is defined as a line joining contracts that give the same expected profit. Let $A=\left(W_{1}^{A}, W_{2}^{A}\right)$ and $B=\left(W_{1}^{B}, W_{2}^{B}\right)$ be such that $\pi(A)=\pi(B)$

if $\pi(A)=\pi(B)$ then $(1-p) W_{2}^{A}+p W_{1}^{A}=(1-p) W_{2}^{B}+p W_{1}^{B}$

$$
\begin{aligned}
(1-p)\left(w_{2}^{A}-w_{2}^{B}\right) & =-p\left(w_{1}^{A}-w_{1}^{B}\right) \\
\frac{w_{2}^{A}-w_{2}^{B}}{w_{1}^{A}-w_{1}^{B}} & =-\frac{p}{1-p}
\end{aligned}
$$

$$
\begin{aligned}
& \pi(G)=h_{G}-P L \\
& \pi(F)=h_{F}-P L
\end{aligned} \quad \Rightarrow \begin{aligned}
& \pi(G)>\pi(F) \\
& \\
& \Pi(B)>\pi(A)
\end{aligned}
$$

Since No Insurance can be thought of as the trivial contract $h=0$ and d $=L$, which gives zero profits, the isoprofit line going through the NI point is the zero-profit line:

$$
\pi(c)<0
$$

$\stackrel{W_{2}}{\rightleftharpoons} \quad$ zero-profit line

$$
\begin{aligned}
& N I=(h=0, d=L) \\
& \begin{aligned}
\pi(N T) & =h-p(L-d) \\
& =0-p(L-L) \\
& =0
\end{aligned}
\end{aligned}
$$

$\pi(F)$

$$
\begin{aligned}
\pi(N T) & =h-p(L-d) \\
& =0-p(L-L) \\
& =0
\end{aligned}
$$

$$
\begin{gathered}
F=(h=2,800, d=0) W=40,000 \quad L=28000 \quad p=\frac{1}{10} \\
p L=\frac{1}{10} 28000=2800
\end{gathered}
$$

EXAMPLE

Let $W=1,600, L=360, p=\frac{1}{12}$. Consider contract $C=\left(h_{C}=50, d_{C}=120\right)$.
(1) Represent NI and C in a wealth diagram.
(2) Calculate $\pi(C)$.
(3) Let D be a contract obtained from C by reducing the premium by 20 and increasing the deductible in such a way that $\pi(D)=\pi(C)$. Find the premium and deductible of contract D.
(4) Represent contract D in the wealth diagram.
(5) Find the full-insurance contract, call it F, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.
(6) Calculate the slope of the isoprofit line through C in the wealth diagram.
(7) Calculate the equation of the isoprofit line through C in the wealth diagram.
(8) Next prove that given two contracts $A=\left(h_{A}, d_{A}\right)$ and $B=\left(h_{B}, d_{B}\right)$, $\pi(A)=\pi(B)$ if and only if the expected value of the wealth lottery (for the insured) corresponding to contact A is equal to the expected value of the wealth lottery (for the insured) corresponding to contact B

$$
W=1,600, L=360, p=\frac{1}{12} \quad C=\left(h_{C}=50, d_{C}=120\right)
$$

(1) Represent NI and C in a wealth diagram.
$W_{2}(\operatorname{good})$

(2) Calculate $\pi(C)=50-\frac{1}{12}(\underbrace{360-120})=30$

$$
\begin{aligned}
& W=1,600, L=360, p=\frac{1}{12} \quad C=\left(h_{C}=50, d_{C}=120\right) \\
& \pi(C)=30
\end{aligned}
$$

(3) Let D be a contract obtained from C by reducing the premium by 20 and increasing the deductible in such a way that $\pi(D)=\pi(C)$. Find the premium and deductible of contract D .

$$
\begin{align*}
& D=(h_{D}=\underbrace{50-20}_{30}, d_{D}) \tag{c}\\
& \pi(D)=30-\frac{1}{12}\left(360-d_{D}\right)= \\
& \quad d_{D}=360=L!
\end{align*}
$$

$$
\begin{aligned}
& W=1,600, L=360, p=\frac{1}{12} \quad C=\left(h_{C}=50, d_{C}=120\right) \\
& \pi(C)=30 \quad D=\left(h_{D}=30, d_{D}=360\right)
\end{aligned}
$$

(4) Represent contract D in the wealth diagram.

(5) Find the full-insurance contract, call it F, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.

