ISOPROFIT LINES

Assume that the insurance company is risk neutral so that it considers selling an insurance contract $C=(h, d)$, corresponding to the lottery $C=\left(\begin{array}{cc}h-(L-d) & h \\ p & 1-p\end{array}\right)$, as equivalent to getting its expected value for sure: $\mathbb{E}[C]=p[h-(L-d)]+(1-p) h=h-p(L-d)=\underbrace{h-p L+p d}$

We denote the expected profit from contract (h, d) by $\pi(h, d)$. Thus

$$
\pi(h, d)=h-p(L-d)=h-p L+p d
$$

If the contract is expressed as a point $\left(W_{1}, W_{2}\right)$ in wealth space then

Suppose that $p=\frac{1}{10}$. What is $\pi(A)$? What is $\pi(B)$?

An isoprofit line is defined as a line joining contracts that give the same expected profit. Let $A=\left(W_{1}^{A}, W_{2}^{A}\right)$ and $B=\left(W_{1}^{B}, W_{2}^{B}\right)$ be such that $\pi(A)=\pi(B)$

Since No Insurance can be thought of as the trivial contract $h=0$ and d $=L$, which gives zero profits, the isoprofit line going through the NI point is the zero-profit line:

EXAMPLE

Let $W=1,600, L=360, p=\frac{1}{12}$. Consider contract $C=\left(h_{C}=50, d_{C}=120\right)$.
(1) Represent NI and C in a wealth diagram.
(2) Calculate $\pi(C)$.
(3) Let D be a contract obtained from C by reducing the premium by 20 and increasing the deductible in such a way that $\pi(D)=\pi(C)$. Find the premium and deductible of contract D.
(4) Represent contract D in the wealth diagram.
(5) Find the full-insurance contract, call it F, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.
(6) Calculate the slope of the isoprofit line through C in the wealth diagram.
(7) Calculate the equation of the isoprofit line through C in the wealth diagram.
(8) Next prove that given two contracts $A=\left(h_{A}, d_{A}\right)$ and $B=\left(h_{B}, d_{B}\right)$, $\pi(A)=\pi(B)$ if and only if the expected value of the wealth lottery (for the insured) corresponding to contact A is equal to the expected value of the wealth lottery (for the insured) corresponding to contact B

$$
W=1,600, L=360, p=\frac{1}{12} \quad C=\left(h_{C}=50, d_{C}=120\right)
$$

(1) Represent NI and C in a wealth diagram.

(2) Calculate $\pi(C)$

$$
\begin{array}{ll}
W=1,600, L=360, p=\frac{1}{12} & C=\left(h_{C}=50, d_{C}=120\right) \\
\pi(C)=30 &
\end{array}
$$

(3) Let D be a contract obtained from C by reducing the premium by 20 and increasing the deductible in such a way that $\pi(D)=\pi(C)$. Find the premium and deductible of contract D .

$$
\begin{aligned}
& W=1,600, L=360, \quad p=\frac{1}{12} \quad C=\left(h_{C}=50, d_{C}=120\right) \\
& \pi(C)=30 \quad D=\left(h_{D}=30, d_{D}=360\right)
\end{aligned}
$$

(4) Represent contract D in the wealth diagram.

(5) Find the full-insurance contract, call it F, that lies on the isoprofit line that goes through contracts C and D and represent it in the wealth diagram.
W_{2}

(6) Calculate the slope of the isoprofit line through C in the wealth diagram.
(7) Calculate the equation of the isoprofit line through C in the wealth diagram.
(8) Next prove that given two contracts $A=\left(h_{A}, d_{A}\right)$ and $B=\left(h_{B}, d_{B}\right)$, $\pi(A)=\pi(B)$ if and only if the expected value of the wealth lottery (for the insured) corresponding to contact A is equal to the expected value of the wealth lottery (for the insured) corresponding to contact B

