$$
L=\left(\begin{array}{ccc}
\$ x_{1} & \cdots & \$ x_{n} \\
p_{1} & & p_{n}
\end{array}\right)
$$

Given a money lottery L, its certainty equivalent, for a particular individual, denoted by C_{L}, is that sum of money such that

$$
\binom{\$ C_{L}}{1} \longrightarrow \$ C_{L} \sim L
$$

Assuming that the individual in question prefers more money to less,

- $\quad C_{L}<E[L]$ if she is risk averse relative to L
- $C_{L}=E[L] \quad$ if she is risk neutral relative to L
- $C_{L}>E[L]$ if she is risk loving relative to L

Given a money lottery L, its risk premium, for a particular individual, denoted by R_{L}, is that sum of money such that

$$
E[L]-R_{L} \sim L
$$

Assuming that the individual in question prefers more money to less,

- $\quad R_{L}>0$ if she is risk averse relative to L
- $\quad R_{L}=0 \quad$ if she is risk neutral relative to L
- $R_{L}<0$ if she is risk loving relative to L

The relationship between $\mathbb{E}[L], C_{L}$ and R_{L} :

$$
\begin{aligned}
& C_{L}=E[L]-R_{L} \\
& R_{L}=E[L]-C_{L}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
\$ 0 & \$ 10,000 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \text { vs } \$ 5,000
$$

Note that if an individual
(1) prefers more money to less,
(2) is risk neutral relative to every money lottery,
(3) has transitive preferences,
then he ranks money lotteries according to their expected values, that is

$$
\begin{aligned}
& L=\left(\begin{array}{cc}
\$ 0 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)>M=\left(\begin{array}{cc}
\$ 30 & \$ 60 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& E[L]=\frac{1}{2} 0+\frac{1}{2} 100=50>E[M]=\frac{1}{2} 30+\frac{1}{2} 60=45
\end{aligned}
$$

INSURANCE MARKETS

Consider an individual with

$$
\begin{array}{llc}
& W & \text { initial wealth } \\
& \\
L & \text { potential loss } & 0<L \leq W \\
\text { Given } & p & \text { probability of loss }
\end{array} 0<p<1
$$

With no insurance she faces the money lottery
$\frac{\begin{array}{l}N I \\ \text { no } \\ \text { insurance }\end{array}=\left(\begin{array}{cc}\$(W-L) & \$ W \\ P & 1-P\end{array}\right)}{\text { loss }=\left(\begin{array}{l}L \\ p\end{array}\right.}$
An insurance contract is a pair (h,d)
h premium
d deductible part of loss that is not covered
$L-d$ insured amount of the loss

With contract (h, d) the individual faces the lottery

$$
N=\left(\begin{array}{cc}
w-h-d & W-h \\
p & 1-p
\end{array}\right)
$$

- If $d=0$ we call the contract a FUll-insurance contract
- If $d>0$ we call the contract a PARTIAL-INSURANCE contract $d \leq L$

With a full-insurance contract $(h, 0)$ the individual is guaranteed a sure wealth of $W-h$

$$
(h=p L, d=0) \leadsto \text { guarnureed } W \text {-pL }
$$

Would the individual purchase the full-insurance contract with $h=p L$?

$$
\begin{aligned}
& \text { Yes for sure if risk arerse } \\
& \text { (indifferent if risk neutral, No if risk loving) }
\end{aligned}
$$

- If she is risk averse then
- If she is risk neutral then
- If she is risk loving then

A contract expressed as a pair (h, d) can be translated into a point in wealth space as follows:

$$
\begin{aligned}
& P=? \quad W=40,000 \\
& \begin{array}{l}
L=40,000-12,000=28,000 \\
A=(18,000,34,000)
\end{array} \\
& \text { /45 }{ }^{\circ} \\
& \text { line } \\
& \Downarrow \\
& \left(h_{A}, d_{A}\right)=(6,000,16,000) \\
& h_{A}=W-W_{2}^{A}= \\
& 40,000-34,000=6,000 \\
& d_{A}=W_{2}^{A}-W_{1}^{A}=34,000- \\
& 18,000=16,000 \\
& B=(22,000,22,000) \\
& d_{B}=0 \\
& \text { Here we have: } \quad W= \\
& L= \\
& h_{B}=40,000-22,000=18,000 \\
& \left(h_{B}=18,000, \quad d_{B}=0\right)
\end{aligned}
$$

ISOPROFIT LINES

Assume that the insurance company is risk neutral so that it considers selling an insurance contract $C=(h, d)$, corresponding to the lottery $C=\left(\begin{array}{cc}h-(L-d) & h \\ p & 1-p\end{array}\right)$, as equivalent to getting its expected value for sure: $\mathbb{E}[C]=p[h-(L-d)]+(1-p) h=h-p(L-d)=\underbrace{h-p L+p d}$

We denote the expected profit from contract (h, d) by $\pi(h, d)$. Thus

$$
\pi(h, d)=h-p(L-d)=h-p L+p d
$$

If the contract is expressed as a point $\left(W_{1}, W_{2}\right)$ in wealth space then

