EXAMPLE 2.

$$
A=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
50 \% & 50 \%
\end{array}\right) \quad B=\binom{\text { paid 1-week vacation }}{100 \%}
$$

Suppose Ann says $B \succ A$ How would she rank

$$
\begin{gathered}
C=\left(\begin{array}{cc}
\begin{array}{c}
\text { paid } 3 \text {-week vacation } \\
5 \%
\end{array} & \left.\begin{array}{c}
\text { no vacation } \\
95 \%
\end{array}\right)
\end{array} \begin{array}{c}
\text { and } D=\left(\begin{array}{c}
\text { paid } 1 \text {-week vacation } \\
10 \%
\end{array}\right. \\
\text { Is it rat vacation } \\
90 \%
\end{array}\right) \text { ? } \\
\text { aud say } B>A \\
\text { aud } \quad C>D
\end{gathered}
$$

Money lotteries

$$
L=\binom{\$ 17}{1} \quad M=\left(\begin{array}{cc}
\$ 9 & \$ 25 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$$
\mathbb{E}[L]=\quad \mathbb{E}[M]=
$$

Suppose Bob's vNM utility function is: $U(\$ x)=\sqrt{x}$
$\mathbb{E}[U(L)]=$

$$
\mathbb{E}[U(M)]=
$$

$$
A=\left(\begin{array}{cc}
\$ 0 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\left(\begin{array}{cc}
\$ 40 & \$ 60 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$\mathbb{E}[A]=$
$\mathbb{E}[B]=$

Suppose Bob's vNM utility function is: $U(\$ x)=\sqrt{x}$
$\mathbb{E}[U(A)]=$
$\mathbb{E}[U(B)]=$

$$
A=\left(\begin{array}{cc}
\$ 4 & \$ 6 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\binom{\$ 5}{1}
$$

$\mathrm{U}(\$ \mathrm{x})=\mathrm{x}^{2}$

Re-define attitudes to risk in terms of utility:

Risk-averse if

Risk-neutral if

Risk-loving if

$$
A=\left(\begin{array}{cc}
\$ 4 & \$ 6 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B=\binom{\$ 5}{1}
$$

$\mathbf{U}(\$ x)=x^{2}$

Theorem 2. Let \succsim be a von Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L}. Then the following are true.
(A) If $U: Z \rightarrow \mathbb{R}$ is a von Neumann-Morgenstern utility function that represents \succsim, then, for any two real numbers a and b with $a>0$, the function $V: Z \rightarrow \mathbb{R}$ defined by $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$ is also a von Neumann-Morgenstern utility function that represents \succsim.
(B) If $U: Z \rightarrow \mathbb{R}$ and $V: Z \rightarrow \mathbb{R}$ are two von Neumann-Morgenstern utility functions that represent \succsim, then there exist two real numbers a and b with $a>0$ such that $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$.
$U=\left\{\begin{array}{llllll}z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\ 10 & 6 & 16 & 8 & 6 & 14\end{array}\right.$

