Slope of an indifference curve

Preliminaries on the meaning of the derivative.
$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $f^{\prime}(x)=$
The derivative is used to
construct a linear function to approximate the function $f(x)$ at a point x_{0} :

$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}+\frac{2 x}{3}$. Let $x_{0}=9$.
$f(9)=\quad$ and $\quad f^{\prime}(9)=$
so that $g(x)=$

Take $x=9.1$. Then $\quad f(9.1)=$

Take $x=12$. Then $f(12)=$
end of preliminaries

Let's see how well g approximates f

$$
g(9.1)=
$$

$$
g(12)=
$$

Slope of indifference curve

Let A and B be two points that lie on the same indifference curve: $\mathbb{E}[U(A)]=\mathbb{E}[U(B)]$,

- Since x_{B} is close to $x_{A}, U\left(x_{B}\right) \simeq$
- Since y_{B} is close to $y_{A}, U\left(y_{B}\right) \simeq$

Thus the RHS of (*) can be written as

So (*) becomes
that is,
which can be written as

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.

- at a point above the 45° line, where $x<y$,
- at a point on the 45° line, where $x=y$,
- at a point below the 45° line, where $x>y$,

Example. $U(m)=\ln (m), \quad p=\frac{1}{3}$. What is the slope of the indifference curve at points $A=(10,40)$ and $B=(10,10)$?
The expected utility of lottery $A=\left(\begin{array}{cc}10 & 40 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is
The slope of the indifference curve at point A is equal to
The expected utility of lottery $B=\left(\begin{array}{cc}10 & 10 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is
The slope of the indifference curve at point B is equal to

Page 13 of $\mathbf{1 3}$

DEMAND SIDE OF INSURANCE

Page 1 of 12
$W=40,000, L=5,000$, probability of loss $p=\frac{1}{50}, \quad U(m)=\ln (m)$
$N I=$

$$
\mathbb{E}[U(N I)]=
$$

Suppose the consumer is offered $A=\left(h_{A}=200, d_{A}=0\right)$ which would yield a profit of $\pi_{A}=$

Would she purchase it?

Suppose the consumer is offered $B=\left(h_{B}=50, d_{B}=100\right)$.
$\mathbb{E}[U(B)]=$
$\pi_{B}=$

So we must exclude points that are below the indifference curve that goes through NI, called the reservation indifference curve, and exclude all those that are above the zero-profit line. The only observable contracts are:

Reminder:

The absolute value of the slope of the indifference curve that goes through point $A=\left(W_{1}^{A}, W_{2}^{A}\right)$ is

$$
\frac{p}{1-p} \frac{U^{\prime}\left(W_{1}^{A}\right)}{U^{\prime}\left(W_{2}{ }^{A}\right)}
$$

Page $\mathbf{4}$ of $\mathbf{1 2}$

1. Suppose the insurance industry is a monopoly

Page 5 of 12

A monopolist will try to make the consumer pay as much as possible and thus will offer a contract which is on the reservation indifference curve and not above it.

$W-L$

Contract A on the reservation indifference curve cannot be profit-maximizing because ...

The only contract on the reservation indifference curve where this cannot happen is the contract at the intersection of the reservation indifference curve and the 45° line: contract F below:

$N I=(\quad$ Expected value:
$\mathbb{E}[N I]=$
Then from the definition of risk premium,

Thus from (1)-(3) we get that

$$
\text { , that is, } \quad h_{F}=p L+R_{N I}
$$

Thus the monopolist will offer a full-insurance contract with premium equal to expected loss + risk premium of NI.

For example, if $W=1,600, L=700, p=\frac{1}{10}$ and $U(\$ m)=\sqrt{m} \quad$ then $h_{F} \quad$ is given by the solution to
which is $\quad h_{F}=$ Since $p L=$
it follows that $R_{N I}=$

2. Suppose the insurance industry is perfectly competitive

A contract that yields zero profit is called a fair contract and the zero profit line is called the fair odds line. Recall that the zero profit line is the straight line that goes through the No Insurance point and has slope $-\frac{p}{1-p}$.

Define an equilibrium in a competitive insurance industry as a situation where
(1) every firm makes zero profits and
(2) no firm (existing or new) can make positive profits by offering a new contract.

By the zero-profit condition (1), any equilibrium contract must be on the zero-profit line.

Page $\mathbf{1 2}$ of $\mathbf{1 2}$

CHOOSING FROM A MENU OF CONTRACTS

$$
\begin{aligned}
& \text { 1. Finite menu of contracts } \\
& W=900, L=700, \quad p=\frac{1}{50}, \quad U(m)=\sqrt{m} \\
& \mathbb{E}[U(A)]= \\
& \mathbb{E}[U(B)]= \\
& \mathbb{E}[U(C)]= \\
& \mathbb{E}[U(N I)]=
\end{aligned}
$$

