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Ranking lotteries 

Given two money lotteries L and M when would any two individuals agree that L is better 

than M, no matter their attitude to risk? Assume throughout that every individual prefers 

more money to less, that is, that each individual’s utility function is strictly increasing.  
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However, there are lotteries that can be unambiguously ranked in the sense that 

everybody ranks them the same way. 
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Note that the basic outcomes are the same in both lotteries and for this part assume that 

the prizes are listed in increasing order: 1 20 .nx x x      

Define the cumulative distribution function (cdf) for lottery L as follows: 
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iP  is the probability that ix x .  

A rewrite it as

1

probabilitydirty Furio
P P P PtPzP 1

P x P pet tpi

P P x



Page 3 of 10 
 

define the cumulative probability distribution for lottery M as follows: 1i iQ q q    

for every i = 1,…,n: 
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Definition. We say that L first-order stochastically dominates M and write FSDL M  

if for ever 1,2, , ,  with at least one strict inequality.i iP Q i n     
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Example 2. 
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Theorem. FSDL M  if and only if  [ ( )] [ ( )]U L U M   for every 

strictly increasing utility function U. 

Thus if lottery L first-order stochastically dominates lottery M then it is unambiguously 

better than M, in the sense that everybody, no matter what their attitude to risk, prefers L 

to M. 

f I I 1
f

L dominate M in me sense of FSD

M
FSD

So independently of attitude to
risk



Page 5 of 10 
 

 

Now focus on risk-averse individuals and ask when any two risk-averse individuals 

would agree that a lottery M is worse than another lottery L, in which case we can 

interpret this as M being more risky than L.  

 

To begin with the two lotteries ought to be similar:  [ ] [ ]L M  , in which case a 

risk-neutral individual would be indifferent between the two.  Hence if a risk-averse 

person is not indifferent it must be because one is “more risky” than the other. 
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