Ranking lotteries

Given two money lotteries L and M when would any two individuals agree that L is better
than M, no matter their attitude to risk? Assume throughout that every individual prefers

more money to less, that is, that each individual’s utility function is strictly increasing
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However, there are lotteries that can be unambiguously ranked in the sense that

everybody ranks them the same way. A = ( b o0 3’; °j ve wri he K ur
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Note that the basic outcomes are the same in both lotteries and for this part assume that
the prizes are listed in increasing order: 0 <x, <x, <...<x,.

Define the cumulative distribution function (cdf) for lottery L as follows:
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define the cumulative probability distribution for lottery M as follows: ¢, =¢, +...+g,

foreveryi=1,...,n:
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Definition. We say that L first-order stochastically dominates M and write L>pg M

if P<Q, foreveri=1,2,...,n, with at least one strict inequality.

Example 1.
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Example 2.

($20 $40 $50 $60j [$2o $40 $50 $60j
L= and M =

1 3 6 2 1 4 S 2
12 12 12 12 12 12 12 12
cdf 1 i 1o 1 { 3 o . cdF
Iz 7 I 2 I — —
2 o3 12

L dowmtiuete, M ‘v Ve Seuce of FsbP

> M

Fsb

Theorem. L >, M if and only if BU(L)]> B[U(M)] for every

strictly increasing utility function U. <o (ude peudeu <, of el hrule h
rvJ i

Thus if lottery L first-order stochastically dominates lottery M then it is unambiguously

better than M, in the sense that everybody, no matter what their attitude to risk, prefers L

to M.
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Now focus on risk-averse individuals and ask when any two risk-averse individuals
would agree that a lottery M 1s worse than another lottery L, in which case we can

interpret this as M being more risky than L.

To begin with the two lotteries ought to be similar: E[L]=E[M] , in which case a
risk-neutral individual would be indifferent between the two. Hence if a risk-averse

person is not indifferent it must be because one is “more risky” than the other.
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