Ranking lotteries

Given two money lotteries L and M when would any two individuals agree that L is better than M, no matter their attitude to risk? Assume throughout that every individual prefers more money to less, that is, that each individual's utility function is strictly increasing.

$$
L=\left(\begin{array}{lll}
\$ 40 & \$ 120 \\
\frac{1}{2} & \frac{1}{2} & \\
\text { that } & & \text { is better than }
\end{array} \quad M=\left(\begin{array}{ll}
\$ 20 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right.
$$

Everybody will agree that

$$
\text { and } M=\left(\begin{array}{cc}
\$ 25 & \$ 100 \\
\frac{3}{5} & \frac{2}{5} ?
\end{array}\right)
$$

$$
\mathbb{E}[L]=\frac{1}{2}|2|=60.5 \text { and } \mathbb{E}[M]=\frac{3}{5} 25+\frac{2}{5} 100=55
$$

For a risk-neutral person: $L>M \begin{aligned} & \text { if you are risk } \\ & \text { NEUTRAL }\end{aligned}$
For a risk-averse person with utility function $U(x)=\sqrt{x}$

$$
\begin{gathered}
\mathbb{E}[U(L)]=\frac{1}{2} \sqrt{0}+\frac{1}{2} \sqrt{121}=\frac{1}{2} 11=5.5 \quad \mathbb{E}[U(M)]=\frac{3}{5} \sqrt{25}+\frac{2}{5} \sqrt{100}=\frac{3}{5} 5+\frac{2}{5} 10=0 \\
\text { Page } 1 \text { of } 10
\end{gathered}
$$

However, there are lotteries that can be unambiguously ranked in the sense that everybody ranks them the same way.
$A=\left(\begin{array}{cc}\$ 100 & \$ 20 \\ \frac{1}{4} & \frac{3}{4}\end{array}\right)$ rewrite it ar $L=\left(\begin{array}{cccc}\$ x_{1} & \$ x_{2} & \ldots & \$ x_{n} \\ p_{1} & p_{2} & \ldots & p_{n}\end{array}\right) \quad M=\left(\begin{array}{cccc}\$ x_{1} & \$ x_{2} & \ldots & \$ x_{n} \\ q_{1} & q_{2} & \ldots & q_{n}\end{array}\right)$. $\left(\begin{array}{cc}\$ 20 & \$ 100 \\ \frac{3}{4} & \frac{1}{4}\end{array}\right)$

Note that the basic outcomes are the same in both lotteries and for this part assume that the prizes are listed in increasing order: $0 \leq x_{1}<x_{2}<\ldots<x_{n}$.

Define the cumulative distribution function (cdf) for lottery L as follows:
$P_{i}=p_{1}+\ldots+p_{i}$ for every $i=1, \ldots, n$:

$$
\begin{aligned}
& L=\left(\begin{array}{ccccc}
\$ x_{1} & \$ x_{2} & \$ x_{3} & \ldots & \$ x_{n} \\
p_{1} & p_{2} & p_{3} & \ldots & p_{n} \\
P_{1} & P_{1}+P_{2} & P_{1}+P_{2}+P_{3} & 1
\end{array}\right) \leftarrow \text { probability distribution or } \quad \text { deusity function } \\
& P\left(x_{i}\right)=p_{1}+p_{2}+\cdots+p_{i}
\end{aligned}
$$

P_{i} is the probability that $x \leq x_{i}$.
define the cumulative probability distribution for lottery M as follows: $Q_{i}=q_{1}+\ldots+q_{i}$ for every $i=1, \ldots, n$:
$M=\left(\begin{array}{ccccc}\$ x_{1} & \$ x_{2} & \$ x_{3} & \ldots & \$ x_{n} \\ q_{1} & q_{2} & q_{3} & \ldots & q_{n} \\ q_{1} & q_{1}+q_{2} & q_{1}+q_{2}+g_{3} & 1\end{array}\right)$

Definition. We say that L first-order stochastically dominates M and write $L>_{\text {ESD }} M$ if $P_{i} \leq Q_{i}$ for ever $i=1,2, \ldots, n$, with at least one strict inequality.

Example 1.

$$
\begin{aligned}
& \begin{aligned}
L=\binom{\$ 40}{1} \text { and } M=\left(\begin{array}{cc}
\$ 20 & \$ 60 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) . & L=\left(\begin{array}{ccc}
\$ 20 & \$ 40 & \$ 60 \\
0 & 1 & 0
\end{array}\right) \\
& P C d F \quad 0
\end{aligned} \\
& M=\left(\begin{array}{ccc}
\$ 20 & \$ 40 & \$ 60 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right) \\
& \text { Q cdr } \frac{1}{2} \quad \frac{1}{2} \\
& \text { Page } \mathbf{3} \text { of } \mathbf{1 0} \\
& \text { doubt have Mar } \\
& P_{i} \leq Q_{i} \text { for all } i \\
& \text { and dower have that } \\
& L \text { and } M \text { cannot be compared in terms of } F S D \quad Q_{i} \leq P_{i} \text { for all } i
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
\$ 20 & \$ 40 & \$ 50 & \$ 60 \\
\frac{1}{12} & \frac{3}{12} & \frac{6}{12} & \frac{2}{12}
\end{array}\right) \text { and } \mathrm{M}=\left(\begin{array}{cccc}
\$ 20 & \$ 40 & \$ 50 & \$ 60 \\
\frac{1}{12} & \frac{4}{12} & \frac{5}{12} & \frac{2}{12}
\end{array}\right) . \\
& \operatorname{cdf} \quad \frac{1}{12} \\
& \frac{4}{12}
\end{aligned} \frac{10}{12} 17 \quad \frac{1}{12} \quad \frac{5}{12} \quad \frac{10}{12} 17 \quad c d f .
$$

L dominate, M in the sense of FSD

$$
L>_{\text {ESD }} M
$$

Theorem. $L>_{\text {ESD }} M$ if and only if $\mathbb{E}[U(L)]>\mathbb{E}[U(M)]$ for every strictly increasing utility function U. So independently of a thirude to Thus if lottery L first-order stochastically dominates lottery M then it is unambiguously better than M, in the sense that everybody, no matter what their attitude to risk, prefers L to M.

Now focus on risk-averse individuals and ask when any two risk-averse individuals would agree that a lottery M is worse than another lottery L, in which case we can interpret this as \boldsymbol{M} being more risky than \boldsymbol{L}.

To begin with the two lotteries ought to be similar: $\mathbb{E}[L]=\mathbb{E}[M]$, in which case a risk-neutral individual would be indifferent between the two. Hence if a risk-averse person is not indifferent it must be because one is "more risky" than the other.

$$
\begin{gathered}
E[L]=50 \quad M=\binom{\$ 50}{1} \quad E\left[\begin{array}{cc}
\$ 0 & \$ 100 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
L=\left(\begin{array}{ccc}
\$ 0 & \$ 30 & \$ 100 \\
0 & 1 & 0
\end{array}\right) \\
M=\left(\begin{array}{cc}
\$ 0 & \$ 30 \\
\frac{1}{2_{\text {Page } 5 \text { of } 10}} 0 & \$ 100 \\
2
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& L=\left(\begin{array}{ccc}
\$ 10 & \$ 50 & \$ 110 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right) \text { with } \mathbb{E}[L]=55
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} 50=20 p+\left(\frac{1}{2}-p\right) 80
\end{aligned}
$$

Solve for $p=\frac{1}{4}$

$$
\begin{aligned}
& \begin{array}{ccc}
20 & 50 & 80 \\
0 & \frac{1}{2} & 0
\end{array} \\
& 20 \quad 5080 \\
& \frac{1}{4} \quad 0 \quad \frac{1}{4} \\
& 50 \\
& \frac{1}{2} \\
& \begin{array}{cc}
20 & 80 \\
\frac{1}{4} & \frac{1}{4}
\end{array} \\
& L=\left(\begin{array}{cc}
10 & 20 \\
\frac{1}{4} & 0 \\
\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
80 & 110 \\
0 & \frac{1}{4}
\end{array}\right) \\
& N=\left(\begin{array}{cccc}
10 & 20 \\
\frac{1}{4} & 0 & \left(\begin{array}{cc}
20 & 80 \\
1 & \frac{1}{4}
\end{array}\right) & 80 \\
0 & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

$L=\left(\begin{array}{ccc}\$ 10 & \$ 50 & \$ 110 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right)$ with $\mathbb{E}[L]=55$

Page 7 of $\mathbf{1 0}$

Page $\mathbf{8}$ of $\mathbf{1 0}$

