We don't have to reduce the probability to zero:

$$L = \begin{pmatrix} \$10 & \$50 & \$110 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

Take away some of the probability of \$50, say $\frac{3}{10}$ and spread it between a lower amount, say \$15, and a higher amount, say \$90:

$$M = \begin{pmatrix} \$10 & \$15 & \$50 & \$90 & \$110 \end{pmatrix}$$

For this to be a mean preserving spread we need

$$M = \begin{pmatrix} \$10 & \$15 & \$50 & \$90 & \$110 \end{pmatrix}$$

Write $L >_{SSD} M$ to mean that *L* dominates *M* in the sense of second-order stochastic dominance.

Definition. $L >_{SSD} M$ if M can be obtained from L by a finite sequence of mean preserving spreads, that is, if there is a sequence of money lotteries $\langle L_1, L_2, ..., L_m \rangle$ (with $m \ge 2$) such that:

(1)
$$L_1 = L$$
,
(2) $L_m = M$
(3) for every $i = 1, \dots, m-1$, $L_i \rightarrow_{MPS} L_{i+1}$

Theorem. $L >_{SSD} M$ if and only if $\mathbb{E}[U(L)] > \mathbb{E}[U(M)]$ for every strictly increasing and strictly concave utility function *U*.

BINARY LOTTERIES

Lotteries of the form $\begin{pmatrix} \$x & \$y \\ p & 1-p \end{pmatrix}$ with *p* fixed and *x* and *y* allowed to vary.

We want to draw indifference curves in this diagram.

Case 1: risk-neutral agent

Let *A* and *B* be such that $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$:

Case 2: risk-averse agent

 $\mathbb{E}[U(C)] =$

The indifference curve must lie below the straight-line segment joining A and B.

Case 2: risk-loving agent

Slope of an indifference curve

Preliminaries on the meaning of the derivative.

$$f(x) = \sqrt{x} + \frac{x^2}{3}$$
. Then $f'(x) =$ The derivative is used to

construct a linear function to approximate the function f(x) at a point x_0 :

Page 8 of 13

$$f(x) = \sqrt{x} + \frac{x^2}{3}$$
. Then $f'(x) = \frac{1}{2\sqrt{x}} + \frac{2x}{3}$. Let $x_0 = 9$.
 $f(9) =$ and $f'(9) =$

so that g(x) =

Let's see how well g approximates f

Take
$$x = 9.1$$
. Then $f(9.1) = g(9.1) =$

Take
$$x = 12$$
. Then $f(12) = g(12) =$

END OF PRELIMINARIES

Slope of indifference curve

Let *A* and *B* be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$,

• Since x_B is close to x_A , $U(x_B) \simeq$

• Since y_B is close to y_A , $U(y_B) \simeq$

Thus the RHS of (*) can be written as

So (*) becomes

that is,

which can be written as

(*)

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.

• at a point **above** the 45° line, where x < y,

- at a point on the 45° line, where x = y,
- at a point **below** the 45° line, where x > y,

Example. $U(m) = \ln(m)$, $p = \frac{1}{3}$. What is the slope of the indifference curve at points A = (10,40) and B = (10,10)? The expected utility of lottery $A = \begin{pmatrix} 10 & 40 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ is

The slope of the indifference curve at point *A* is equal to

The expected utility of lottery $B = \begin{pmatrix} 10 & 10 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ is

The slope of the indifference curve at point *B* is equal to

