We don't have to reduce the probability to zero: $\quad L=\left(\begin{array}{ccc}\$ 10 & \$ 50 & \$ 110 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right)$ Take away some of the probability of $\$ 50$, say $\frac{3}{10}$ and spread it between a lower amount, say $\$ 15$, and a higher amount, say $\$ 90$:

$$
M=\left(\begin{array}{lllll}
\$ 10 & \$ 15 & \$ 50 & \$ 90 & \$ 110 \\
& & & &
\end{array}\right)
$$

For this to be a mean preserving spread we need

$$
M=\left(\begin{array}{lllll}
\$ 10 & \$ 15 & \$ 50 & \$ 90 & \$ 110 \\
& & & &
\end{array}\right)
$$

Write $L>_{\text {SSD }} M$ to mean that \boldsymbol{L} dominates \boldsymbol{M} in the sense of second-order stochastic dominance.

Definition. $L>_{S S D} M$ if M can be obtained from L by a finite sequence of mean preserving spreads, that is, if there is a sequence of money lotteries
$\left\langle L_{1}, L_{2}, \ldots, L_{m}\right\rangle$ (with $m \geq 2$) such that:

$$
\begin{aligned}
& \text { (1) } L_{1}=L \\
& \text { (2) } L_{m}=M \\
& \text { (3) for every } i=1, \ldots, m-1, L_{i} \rightarrow_{M P S} L_{i+1}
\end{aligned}
$$

Theorem. $L>_{S S D} M \quad$ if and only if $\mathbb{E}[U(L)]>\mathbb{E}[U(M)]$ for every strictly increasing and strictly concave utility function U.

BINARY LOTTERIES

Lotteries of the form $\left(\begin{array}{cc}\$ x & \$ y \\ p & 1-p\end{array}\right)$ with p fixed and x and y allowed to vary.

We want to draw indifference curves in this diagram.

Case 1: risk-neutral agent

Let A and B be such that $\mathbb{E}[U(A)]=\mathbb{E}[U(B)]$:

Page $\mathbf{3}$ of $\mathbf{1 3}$

Case 2: risk-averse agent

$U(m)$ is strictly concave:

(

Page 4 of $\mathbf{1 3}$

$\mathbb{E}[U(C)]=$

The indifference curve must lie below the straight-line segment joining A and B.

Page 6 of 13

Case 2: risk-loving agent

Page 7 of $\mathbf{1 3}$

Slope of an indifference curve

Preliminaries on the meaning of the derivative.
$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $\quad f^{\prime}(x)=$
The derivative is used to
construct a linear function to approximate the function $f(x)$ at a point x_{0} :

$f(x)=\sqrt{x}+\frac{x^{2}}{3}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}+\frac{2 x}{3}$. Let $x_{0}=9$.
$f(9)=\quad$ and $\quad f^{\prime}(9)=$
so that $g(x)=$

Take $x=9.1$. Then $\quad f(9.1)=$

Take $x=12$. Then $f(12)=$
END OF PRELIMINARIES

Let's see how well g approximates f

$$
g(9.1)=
$$

$$
g(12)=
$$

Slope of indifference curve

Let A and B be two points that lie on the same indifference curve: $\mathbb{E}[U(A)]=\mathbb{E}[U(B)]$,

- Since x_{B} is close to $x_{A}, U\left(x_{B}\right) \simeq$
- Since y_{B} is close to $y_{A}, U\left(y_{B}\right) \simeq$

Thus the RHS of (*) can be written as

So (*) becomes
that is,
which can be written as

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.

- at a point above the 45° line, where $x<y$,
- at a point on the 45° line, where $x=y$,
- at a point below the 45° line, where $x>y$,

Example. $U(m)=\ln (m), \quad p=\frac{1}{3}$. What is the slope of the indifference curve at points $A=(10,40)$ and $B=(10,10)$?
The expected utility of lottery $A=\left(\begin{array}{cc}10 & 40 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is

The slope of the indifference curve at point A is equal to
The expected utility of lottery $B=\left(\begin{array}{cc}10 & 10 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ is
The slope of the indifference curve at point B is equal to

Page 13 of 13

