V(q) > 4(q)

What if there is **asymmetric information**: only the owner knows the quality q?

Quality q	best: A	В	С	D	Ε	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion	120	<u>200</u> 1120	106 120	240	<u> </u>	140 1120	
v(q) (seller)	720	630	540	450	360	270	
u(q) (buyer)	800	700	600	500	400	300	

Publicly available information:

Buyer: if a car is offered to me at price *p* should I buy it?

Buying a car at price p is playing the lottery

$$= \begin{pmatrix} \$(800-p) & \square & \$(700-p) & \square & \$(600-p) & \square & \$(500-p) & \square & \$(400-p) & \square & \$(300-p) \\ \frac{120}{1120} = \frac{3}{28} & \square & \frac{200}{1120} = \frac{5}{28} & \square & \frac{100}{1120} = \frac{5}{56} & \square & \frac{240}{1120} = \frac{3}{14} & \square & \frac{320}{1120} = \frac{2}{7} & \square & \frac{140}{1120} = \frac{1}{8} \end{pmatrix}$$

$$E[L] = \frac{3}{28}(800-p) + \frac{5}{28}(700-p) + \dots + \frac{1}{8}(300-p) =$$

= 523.21 - P as long as $p < 523$ I should buy

$$V(sm) = m$$

7

				not o	ffered					
	Suppose	<i>p</i> =	460	for so	rle					
	Quality	q	best: A	В	С	D	Ε	worst: F		
	v(q) (selle	er)	720	630	540	450	360	270		
iuitiu prob	9 . 5	Nhu	3	<u>5</u> 28	<u>5</u> 56	$\frac{3}{14}$	27	<u>1</u> 8		
	J	65	<u> </u>	10 56	5 56	12 56	<u> 6</u> 56	<u>7</u> 56		
new prob. given ZD,E,	F}	0		D	0	<u>12</u> 35	<u>16</u> 33	7 35	12 +16 +	7 = 35
Bu	uying	G (car a	price	P =	460	mea	ins playiv	.9	

buyers should not buy if P=460

$$M = \begin{pmatrix} (500-460) & (400-460) & (300-460) \\ \frac{12}{35} & \frac{16}{35} & \frac{7}{35} \end{pmatrix} \qquad E[M] = 414.29 - 460 \\ = -45.71$$

$$IF 270 < P < 300$$

$$IF 270 < P < 300$$

$$Ic achive but only
$$Ic achive but only
$$Ic achive but only
$$Ic achive but only
Ic achive
Ic achive but only
Ic achive but onl$$$$$$$$

	<u> </u>	4	1	
	6	C	6	Buyer
Quality	L	M	Н	are ris u
probability	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$	neutral
seller's value	900	1,200	1,400	
buyer's value	1,020	1,320	1,500	

For every price p determine if there is a second-hand market.

•
$$P \ge 1,400$$
 all qualities offered for sale
Buyer: $\begin{pmatrix} 1,020 & 1,320 & 1,500 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{pmatrix}$ exp. value = 1,300
Nobody willing to buy.
• $1,200 \le P < 1,400$ Ouly qualities L and M offered for sale
Buyer: $\begin{pmatrix} 1,020 & 1,320 \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$ $1+4=5$
Exp. value : $\frac{1}{5} 1,020 + \frac{4}{5},1320 = 1,260$
if $1,200 \le P \le 1,260$ Mean there is trading and
all cars of qualifies L and M
are traded. No trading of quality
H
if $1,260 buyers not willing to buy
 $900 \le P < 1,200$ M and H not offered for sale
L is $1,020 < P \le 1,200$ active uninet
buyer: $\begin{pmatrix} 1,020 \\ 1 \end{pmatrix}$ $900 \le P \le 1,200$ active uninet
but only for L$

ADVERSE SELECTION