$$
V(q)>u(q)
$$

What if there is asymmetric information: only the owner knows the quality q ?
Publicly available information:

Quality q	best: A	B	C	D	E	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion	$\frac{120}{1120}$	$\frac{200}{1120}$	$\frac{100}{1120}$	$\frac{240}{1120}$	$\frac{320}{1120}$	$\frac{140}{420}$	
$v(q)$ (seller)	720	630	540	450	360	270	
$u(q)$ (buyer)	800	700	600	500	400	300	

Buyer: if a car is offered to me at price p should I buy it?

Buying a car at price p is playing the lottery

$$
\left(\begin{array}{ccccccccc}
\$(800-p) & \$(700-p) & \$(600-p) & \vdots & \$(500-p) & \vdots & \$(400-p) & \$(300-p) \\
\frac{120}{1120}=\frac{3}{28} & & \frac{200}{1120}=\frac{5}{28} & & \frac{100}{1120}=\frac{5}{56} & & \frac{240}{1120}=\frac{3}{14} & & \frac{320}{1120}=\frac{2}{7}
\end{array}\right.
$$

Suppose $p=460$

Quality q	best: A	B	C	D	E	worst: F
$v(q)$ (seller)	720	630	540	450	360	270

Back to previous example. Suppose that $\mathrm{p}=460$. Then only qualities D, E, F offered
Step 1: convert probabilities to a common denominator:

Quality q	best: A	B	C	D	E	worst: F
Proportion	$p_{A}=\frac{3}{28}$	$p_{B}=\frac{5}{28}$	$p_{C}=\frac{5}{56}$	$p_{D}=\frac{3}{14}$	$p_{E}=\frac{2}{7}$	$p_{F}=\frac{1}{8}$

Step 2: condition on $\{D, E, F\}$

Quality q	best: A	B	C	D	E	worst: F
Proportion						

Suppose $p=380$

Quality q	best: A	B	C	D	E	worst: F
$v(q)$ (seller)	720	630	540	450	360	270

Quality	L	M	H
probability	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
seller's value	900	1,200	1,400
buyer's value	1,020	1,320	1,500

For every price p determine if there is a second-hand market.

All-you-can eat buffet in Davis. Hire a market research firm to find out about demand. Customers of different types. A type of a customer is a pair (r, c) where

- r is the maximum price the customer is willing to pay
- c is the number of dishes that the customer would consume

Risk neutral. Cost per dish is $\mathbf{\$ 2 . 4 0}$.

- If you charge $\$ 8$ then average consumption

Average cost per customer
Profit per customer
$\begin{array}{cccccccc} & \text { Customer type } & (\$ 8,2) & (\$ 8,2.5) & (\$ 8.50,2.5) & (\$ 8.50,3) & (\$ 9,3) & (\$ 9,3.5) \\ \text { What if you charge } \$ 8.50 ? & \text { Proportion } & \frac{1}{4} & \frac{1}{8} & \frac{1}{6} & \frac{1}{24} & \frac{1}{8} & \frac{7}{24}\end{array}$

Step 1: convert to same denominator Proportion

Customer type $\quad(\$ 8.50,2.5) \quad(\$ 8.50,3) \quad(\$ 9,3) \quad(\$ 9,3.5)$

- If you charge $\$ 8.50$ then Proportion

Average consumption:

Average cost per customer
Profit per customer

Customer type $\quad(\$ 9,3) \quad(\$ 9,3.5)$

- If you charge $\$ 9$ then Proportion

Average consumption:

Average cost per customer Profit per customer

