V(q) > u(q)

What if there is **asymmetric information**: only the owner knows the quality q?

Quality q	best: A	В	С	D	Ε	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion	120 1120	<u>200</u> 1120	100	240	<u>320</u> 1120	140 1120	
v(q) (seller)	720	630	540	450	360	270	
u(q) (buyer)	800	700	600	500	400	300	

Publicly available information:

Buyer: if a car is offered to me at price *p* should I buy it?

Buying a car at price p is playing the lottery

(800 - p)		(700 - p)		(600 - p)		(500 - p)		(400 - p)		(300 - p)
$\left(\frac{120}{1120} = \frac{3}{28}\right)$		200 5		100 5		240 3		320 2		140 1
$\sqrt{\frac{1120}{1120}} = \frac{1}{28}$	11	$\frac{1120}{1120} = \frac{1120}{28}$	11	$\frac{1120}{1120} = \frac{1}{56}$	11	$\frac{1120}{14} = \frac{14}{14}$	11	$\frac{1120}{1120} = \frac{1}{7}$	11	$\overline{1120} = \overline{8}$

Suppose p = 460

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270

Back to previous example. Suppose that p = 460. Then only qualities D, E, F offered **Step 1**: convert probabilities to a common denominator:

Quality q	best: A	В	С	D	Ε	worst: F
Proportion	$p_A = \frac{3}{28}$	$p_{B} = \frac{5}{28}$	$p_C = \frac{5}{56}$	$p_D = \frac{3}{14}$	$p_E = \frac{2}{7}$	$p_F = \frac{1}{8}$

Step 2: condition on {D, E, F}

Quality q	best: A	В	С	D	Ε	worst: F
Proportion						

Suppose p = 380

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270

Quality	L	M	H
probability	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
seller's value	900	1,200	1,400
buyer's value	1,020	1,320	1,500

For every price p determine if there is a second-hand market.

All-you-can eat buffet in Davis. Hire a market research firm to find out about demand. Customers of different types. A type of a customer is a pair (r,c) where

- *r* is the maximum price the customer is willing to pay
- *c* is the number of dishes that the customer would consume

Customer type(\$8, 2)(\$8, 2.5)(\$8.50, 2.5)(\$8.50, 3)(\$9, 3)(\$9, 3.5)Proportion $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$ $\frac{1}{8}$ $\frac{7}{24}$

Risk neutral. Cost per dish is \$2.40.

• If you charge \$8 then average consumption

Average cost per customer

Profit per customer

Customer type (\$8, 2) (\$8, 2.5) (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) What if you charge \$8.50? Proportion $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$ $\frac{1}{8}$ $\frac{7}{24}$ Customer type (\$8, 2) (\$8, 2.5) (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) Step 1: convert to same denominator Proportion Customer type (\$8.50, 2.5) (\$8.50, 3) (\$9, 3) (\$9, 3.5) • If you charge \$8.50 then Proportion Average consumption: Average cost per customer Profit per customer Customer type (\$9, 3) (\$9, 3.5)• If you charge \$9 then Proportion Average consumption:

Average cost per customer

Profit per customer