Definition. Contract \boldsymbol{C} is Pareto dominated by contract \boldsymbol{B} if:
or B Pareto dominates C either $\left.\begin{array}{rl} & \begin{array}{ll}E\left[U_{A}(B)\right]>E\left[U_{A}(C)\right] & B \succ_{A} C \\ \text { and } & \text { and } \\ E\left[U_{P}(B)\right] \geq E\left[U_{P}(C)\right]\end{array} \\ \text { or that is, } & B \succsim_{P} C\end{array}\right\} \begin{array}{ll}E\left[U_{P}(B)\right]>E\left[U_{P}(C)\right] & B\rangle_{P} C \\ \text { and } & B \succsim_{A} C \\ E\left[U_{A}(B)\right] \geq E\left[U_{A}(C)\right]^{\text {that is, }} & B\end{array}$
by any other contract
Definition. A contract that is not Pareto dominated is called Pareto efficient (or Pareto optimal). Thus contract C is Pareto efficient if for every other contract D, either

$$
E\left[U_{p}(D)\right]<E\left[U_{p}(C)\right]
$$

or

$$
E\left[U_{A}(D)\right]<E\left[U_{A}(c)\right]
$$

or both.
p prob of G
Example. $X^{G}=1,000, \quad X^{B}=600, p=\frac{1}{3} \quad U_{P}(\mathrm{~m})=\sqrt{\mathrm{m}} \quad$ and $\quad U_{A}(m)=m$. $w_{G} \quad W_{B}$ $\omega_{G} \quad \omega_{B}$
$C=(400,400)$ is Pareto dominated by contract $B=(676,276)$:

$$
\begin{aligned}
& \mathbb{E}\left[U_{P}(B)\right]=\frac{1}{3} \sqrt{1000-676}+\frac{2}{3} \sqrt{600-276}=\sqrt{324}=18 \\
& \mathbb{E}\left[U_{P}(C)\right]=\frac{1}{3} \sqrt{1,000-400}+\frac{2}{3} \sqrt{600-400}=17.6
\end{aligned}
$$

and

$$
\begin{array}{ll}
\mathbb{E}\left[U_{A}(B)\right]=\frac{1}{3} 676+\frac{2}{3} 276=\underbrace{409.33}_{V} & B \succ_{A} C \\
\mathbb{E}\left[U_{A}(C)\right]=400=\left(\frac{1}{3} 400+\frac{2}{3} 400\right) &
\end{array}
$$

B Pareto dominates C

For the Principal:
 $E\rangle_{p} c$
$A>p$ $C>p B$

For the Agent:
$C>_{A} A$
$E \lambda_{A} C$
$C\rangle_{A} B$
$D>_{A} C$

Page 12 of 14

Thus C is Pareto dominated by E (or E Pareto dominates C). So C is not Pareto efficient.
Any contract C at which the indifference curves cross cannot be Pareto efficient, because any contract in the area between the two curves is Pareto superior to (or Pareto dominates) C.

Thus a contract C in the interior of the box is Pareto efficient if and only if the two indifference curves (of Principal and Agent) are tangent at C.

Example:

Page 14 of 14

Pareto efficient risk sharing

We saw that a contract $C=\left(w_{C}^{G}, w_{C}^{B}\right)$ in the interior of the Edgeworth box $\left(0<w^{G}<X^{G}\right.$ and $\left.0<w^{B}<X^{B}\right)$ is Pareto efficient if and only if the two indifference curves through C are tangent at that point.

- Slope of Principal's indifference curve at $C=\left(w_{C}^{G}, w_{C}^{B}\right):-\frac{p}{1-p} \frac{U_{p}^{\prime}\left(X^{G}-w_{C}^{G}\right)}{U_{p}^{\prime}\left(x^{B}-W_{C}^{B}\right)}$

Thus the two are equal if and only if

$$
\frac{U_{p}^{\prime}\left(x^{G}-w_{c}^{G}\right)}{U_{p}^{\prime}\left(x^{B}-w_{c}^{B}\right)}=\frac{U_{A}^{\prime}\left(w_{c}^{G}\right)}{U_{A}^{\prime}\left(w_{C}^{B}\right)}
$$

$$
U_{A}(\$ m)=a m+b \quad a>0
$$

Case 1: Principal risk averse, Agent risk neutral

Agent's utility function can be taken to be

$$
U_{A}(\$ m)=m \quad U_{A}^{\prime}(\$ m)=1
$$

$$
\frac{U_{A}^{\prime}\left(W_{C}^{G}\right)}{U_{A}^{\prime}\left(W_{C}^{B}\right)}=\frac{1}{1}=1
$$

Hence the required equality $\frac{U_{P}^{\prime}\left(X^{G}-w_{C}^{G}\right)}{U_{P}^{\prime}\left(X^{B}-w_{C}^{B}\right)}=\frac{U_{A}^{\prime}\left(w_{C}^{G}\right)}{U_{A}^{\prime}\left(w_{C}^{B}\right)}$ reduces to $\quad U_{p}^{\prime}\left(X^{G}-w_{C}^{G}\right)=U_{p}^{\prime}\left(X^{B}-w_{C}^{B}\right)$

Since U_{P} is strictly concave,

$$
\Rightarrow x^{G}-w_{c}^{G}=x^{B}-w_{(*)}^{B}
$$

\downarrow
C lies on 45°
lime for Principal

That is, contract C must be on the 45° line out of the origin for the Principal:

Case 2: Principal risk neutral, Agent risk averse
Principal's utility function can be taken to be $\quad U_{p}(\$ m)=m \quad U_{p}^{\prime}(\$ m)=1$

$$
1=\frac{1}{1}
$$

Hence the required equality $\frac{U_{P}^{\prime}\left(X^{G}-w_{C}^{G}\right)}{U_{P}^{\prime}\left(X^{B}-w_{C}^{B}\right)}=\frac{U_{A}^{\prime}\left(w_{C}^{G}\right)}{U_{A}^{\prime}\left(w_{C}^{B}\right)}$ reduces to $\quad U_{A}^{\prime}\left(w_{C}^{G}\right)=U_{A}^{\prime}\left(w_{C}^{B}\right)$

Since U_{A} is strictly concave,

$$
\begin{equation*}
w_{c}^{G}=w_{c}^{B} \tag{}
\end{equation*}
$$

Thus (*) is satisfied if and only if

$$
\begin{aligned}
& C \text { lies on } 45^{\circ} \text { line } \\
& \text { for tho Agent }
\end{aligned}
$$

Thus contract C must be on the 45° line out of the origin for the Agent:

General principle: when one party is risk averse and the other is risk neutral, the riskneutral party must bear all the risk (that is, the risk-averse party must be guaranteed a fixed level of wealth).

Case 3: both Principal and Agent risk averse

Recall from Week 4 (04A) that (IC = indifference curve)

- at a point above the 45° line, slope of IC is, in absolute value, greater than $\frac{P}{1-P}$
- at a point on the 45° line, slope of IC is, in absolute value, equal to $\frac{P}{1-P}$
- at a point below the 45° line, slope of IC is, in absolute value, less than $\frac{P}{1-P}$

Slope of P 's ind curve at $B=\frac{P}{1-p}$ in absolute value
B is below A 's 45° line so slope ar B is $<\frac{p}{1-r}$

- At point A,
- At point B,
- At point D,
- At point C,

Example. $U_{P}(m)=\sqrt{m}$ and $U_{A}(m)=82-\left(10-\frac{\mathrm{m}}{100}\right)^{2}-1 . \quad$ Let $X^{G}=800$ and $X^{B}=200$. Consider the contract $\left(\mathbf{w}^{\mathbf{G}}=\mathbf{4 0 0}, \mathbf{w}^{\mathbf{B}}=\mathbf{1 0 0}\right)$. Is it Pareto efficient? We have to check if equality of the slopes holds.
$\mathrm{U}^{\prime} \mathrm{P}(\mathrm{m})=\frac{1}{2 \sqrt{m}} \longrightarrow$ Agent gets 50% of the our come

Page 10 of 12

The indifference curve of the Principal is less steep than the indifference curve of the Agent at point $\left(w^{G}=400, w^{B}=100\right)$: see the following figure

Page 11 of $\mathbf{1 2}$

Let $S=\left(w^{G}=400, w^{B}=100\right)$ be the contract under consideration and let $T=\left(w^{B}=401, w^{B}=99.7\right)$. Then
$\mathbb{E}\left[U_{p}(S)\right]=$
$\mathbb{E}\left[U_{A}(S)\right]=$

$$
\begin{aligned}
& \mathbb{E}\left[U_{P}(T)\right]= \\
& \mathbb{E}\left[U_{A}(T)\right]=
\end{aligned}
$$

Case 4: both Principal and Agent risk neutral

Page 12 of 12
every courracz
i) Pareto efficient

