

contract C is Pareto efficient if for every other contract D, either

or

or both.

Example.
$$X^G = 1,000, X^B = 600, p = \frac{1}{3} U_P(m) = \sqrt{m}$$
 and $U_A(m) = m$.

C = (400, 400) is Pareto dominated by contract B = (676, 276):

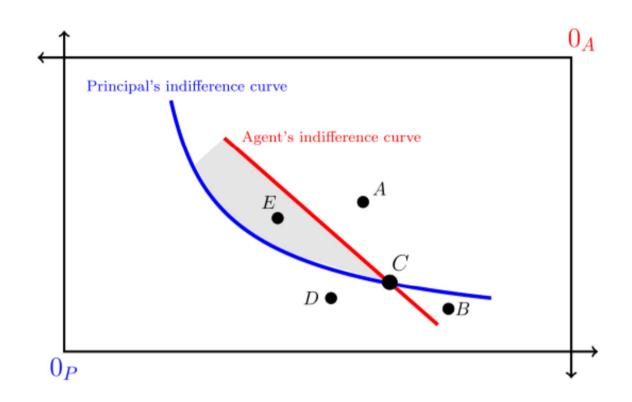
 $\mathbb{E} \big[U_P(B) \big] =$

 $\mathbb{E} \big[U_{P}(C) \big]^{=}$

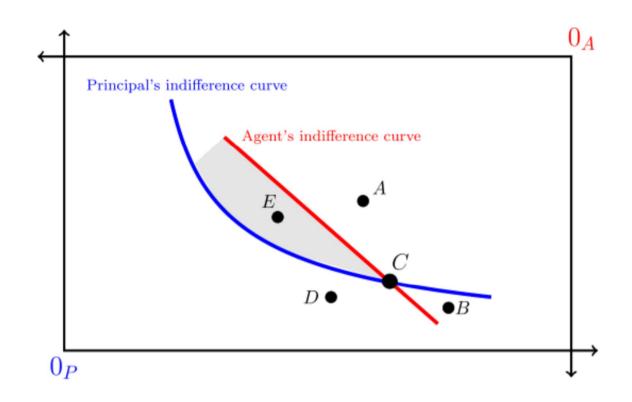
and

 $\mathbb{E} \big[U_{_A}(B) \big] ^=$

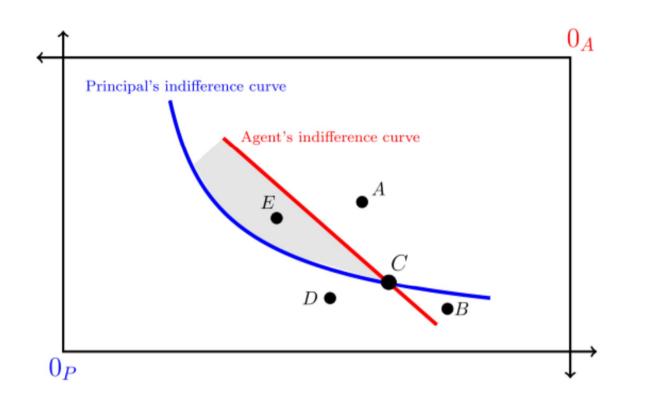
 $\mathbb{E} \big[U_{\scriptscriptstyle A}(C) \big] =$



For the Principal:



For the Agent:



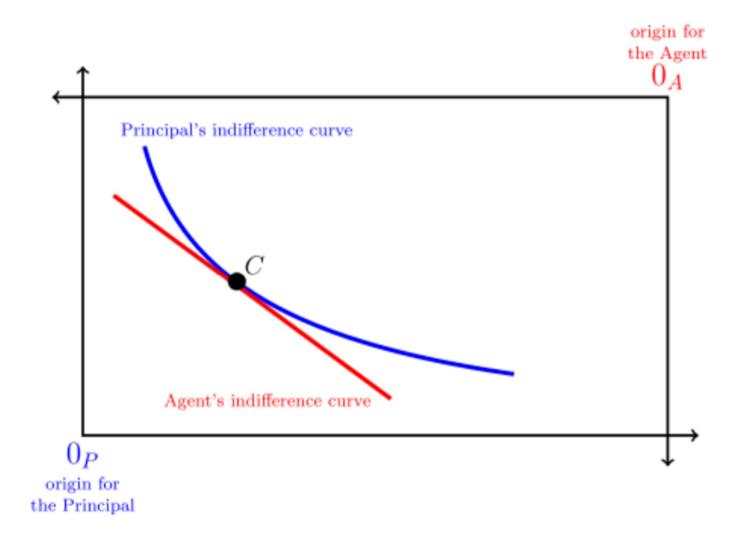
For the Principal: $C \succ_p D$ $C \succ_p B$ $E \succ_p C$ $A \succ_p C$ $A \succ_p E$ For the Agent: $\begin{array}{c} C \succ_A A \\ D \succ_A E \end{array}$ $B \succ_A A$ $C \succ_A B$ $E \succ_A C$ $D \succ_A C$

Thus C is Pareto dominated by E (or E Pareto dominates C). So C is not Pareto efficient.

Any contract C at which the indifference curves cross cannot be Pareto efficient, because any contract in the area between the two curves is Pareto superior to (or Pareto dominates) C.

Thus a contract *C* in the interior of the box is Pareto efficient if and only if the two indifference curves (of Principal and Agent) are tangent at *C*.

Example:



Pareto efficient risk sharing

We saw that a contract $C = (w_C^G, w_C^B)$ in the **interior** of the Edgeworth box $(0 < w^G < X^G)$ and $0 < w^B < X^B$) is Pareto efficient if and only if the two indifference curves through *C* are tangent at that point.

• Slope of Principal's indifference curve at $C = (w_C^G, w_C^B)$:

• Slope of Agent's indifference curve at $C = (w_C^G, w_C^B)$:

Thus the two are equal if and only if

Case 1: Principal risk averse, Agent risk neutral

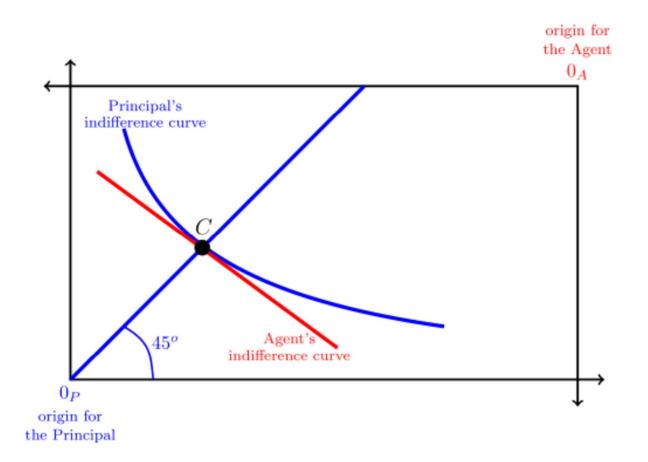
Agent's utility function can be taken to be

Hence the required equality
$$\frac{U'_P(X^G - w_C^G)}{U'_P(X^B - w_C^B)} = \frac{U'_A(w_C^G)}{U'_A(w_C^B)}$$
 reduces to

Since U_P is strictly concave, Thus (*) is satisfied if and only if

That is, contract C must be on the 45° line out of the origin for the Principal:

(*)



Case 2: Principal risk neutral, Agent risk averse

Principal's utility function can be taken to be

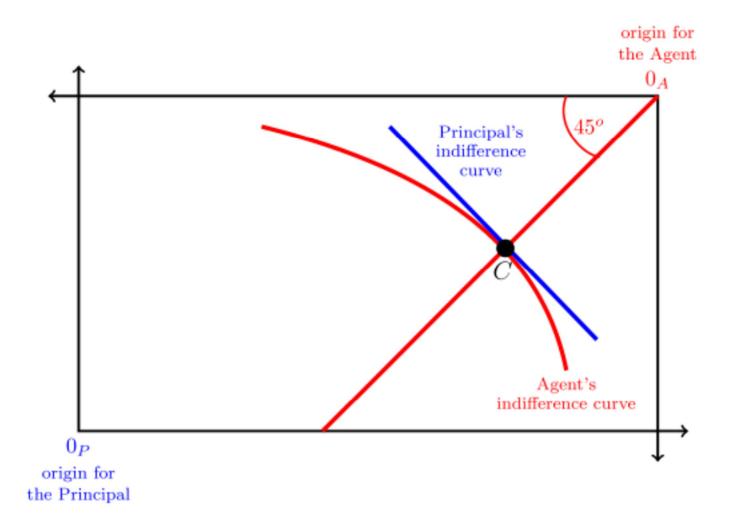
Hence the required equality $\frac{U'_P(X^G - w_C^G)}{U'_P(X^B - w_C^B)} = \frac{U'_A(w_C^G)}{U'_A(w_C^B)}$ reduces to

Since U_A is strictly concave,

Thus (*) is satisfied if and only if

(*)

Thus contract *C* must be on the 45° line out of the origin for the Agent:

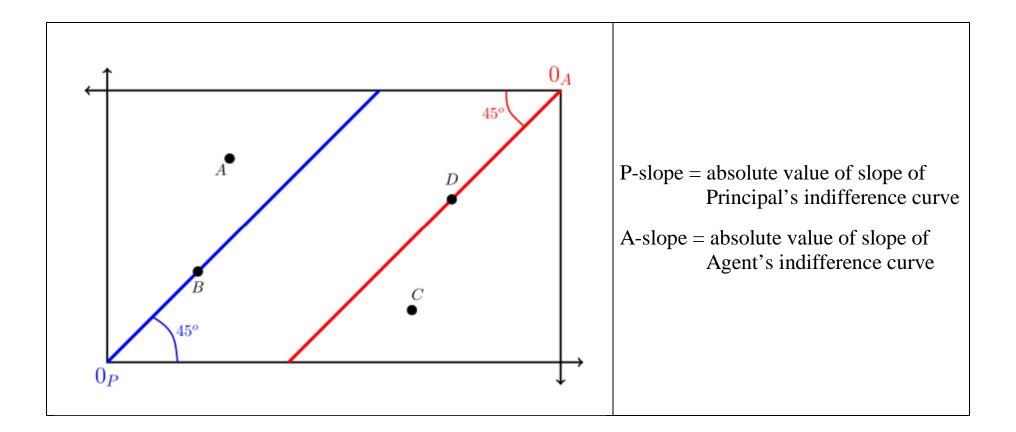


General principle: when one party is risk averse and the other is risk neutral, the riskneutral party must bear all the risk (that is, the risk-averse party must be guaranteed a fixed level of wealth).

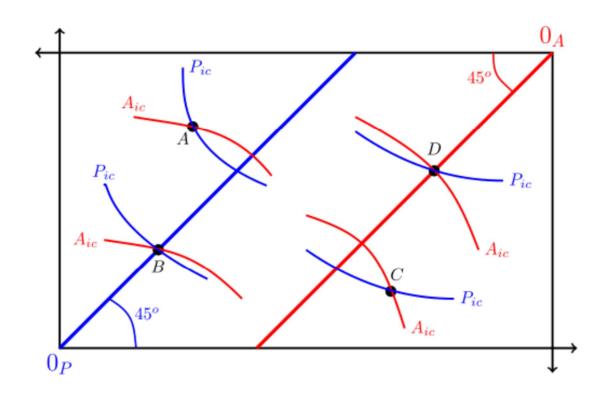
Case 3: both Principal and Agent risk averse

Recall from Week 4 (04A) that (IC = indifference curve)

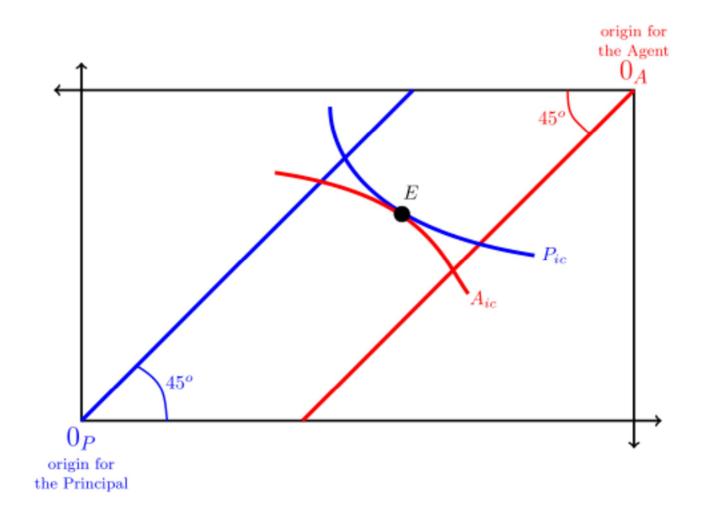
- at a point above the 45° line, slope of IC is, in absolute value, greater than
- at a point on the 45° line, slope of IC is, in absolute value, equal to
- at a point below the 45° line, slope of IC is, in absolute value, less than



- At point *A*,
- At point *B*,
- At point *D*,
- At point *C*,



Thus the tangency can occur only at points between the two 45° lines. Hence both individuals must bear some of the risk.



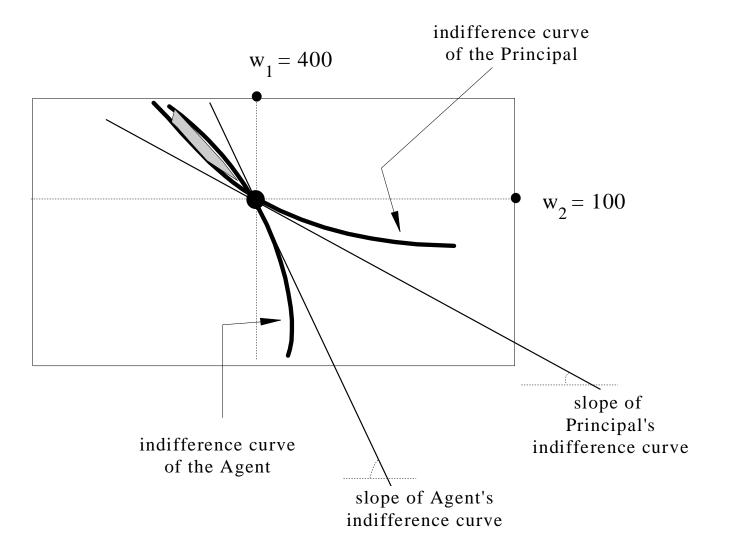
Example. $U_P(m) = \sqrt{m}$ and $U_A(m) = 82 - \left(10 - \frac{m}{100}\right)^2 - 1$. Let $X^G = 800$ and $X^B = 200$. Consider the contract ($\mathbf{w}^G = 400$, $\mathbf{w}^B = 100$). Is it Pareto efficient? We have to check if equality of the slopes holds. $U'_P(m) =$

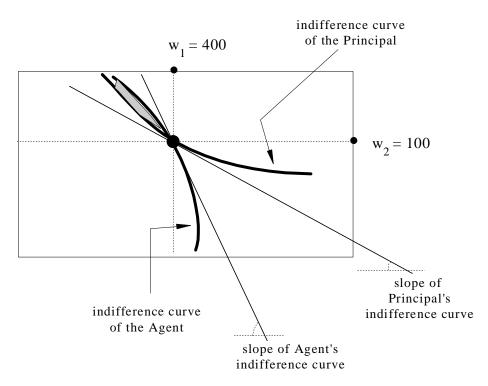
 $U'_A(m) =$

Principal:
$$\frac{U'_P(X^G - w^G)}{U'_P(X^B - w^B)}$$

Agent:

The indifference curve of the Principal is less steep than the indifference curve of the Agent at point $(w^{G}=400, w^{B}=100)$: see the following figure





Let $S = (w^G = 400, w^B = 100)$ be the contract under consideration and let $T = (w^B = 401, w^B = 99.7)$. Then

$$\mathbb{E}[U_{P}(S)]_{=} \qquad \mathbb{E}[U_{P}(T)]_{=}$$
$$\mathbb{E}[U_{A}(S)]_{=} \qquad \mathbb{E}[U_{A}(T)]_{=}$$

Case 4: both Principal and Agent risk neutral

Page 12 of 12