Principal-Agent contracts
Principal hires Agent to perform a tasse Outcome cam be $\$ x_{1}$ or $\$ x_{2}$ with

$$
x_{1}<x_{2}
$$

Courcar: $\left(w_{1}, w_{2}\right)$
$\downarrow \longrightarrow$ payment to Agent if x_{2}
payment 10 Agent if X_{1}

$$
\text { Probabilities: } x_{1} \quad x_{2}
$$

p is
p
1-p
fixed

Moral hazard in Principal-Agent relationships

PRINCIPAL	AGENT	AGENT'S ACTION NOT OBSERVED BY THE PRINCIPAL
Owner of firm	Manager	Amount of time/effort spent running the firm
Client	Lawyer	Amount of time/care devoted to case
Client	Doctor	Amount of time/care devoted to study of patient's symptoms
Land owner	Farmer	Farming effort
Landlord	Renter	Upkeep of building

The outcome is uncertain and is affected by the level of effort exerted by the Agent.

Two possible outcomes: $\quad \$ X_{1}<\$ X_{2}$

Two possible levels of effort for the Agent:

$$
\begin{aligned}
& e_{L} \text { low effort } \\
& e_{H} \text { high effort }
\end{aligned}
$$

probability of $X_{1}=$

$$
\begin{aligned}
0< & p_{1}^{H}<p_{1}^{L}<1 \\
& \downarrow \\
& \text { probability of } X_{7} \text { if Ageur } \\
& \text { chooses } e_{H}
\end{aligned}
$$

- the Principal is risk neutral: $U_{p}(\$ m)=m$
- the Agent is risk averse and dislikes effort: $U_{A}(m, e)$

$$
\frac{\partial U_{A}}{\partial m}>0, \quad \frac{\partial^{2} U_{A}}{\partial m^{2}}<0, \quad \frac{\partial U_{A}}{\partial e}<0
$$

$$
U_{A}\left(m, e_{H}\right)<U_{A}\left(m, e_{L}\right)
$$

The analysis of optimal risk-sharing taught us that when the Principal is risk neutral and the Agent is risk averse, Pareto efficiency requires that the Agent be paid a fixed wage. Every fixed-wage contract is Pareto efficient.

EXAMPLE

$$
X_{1}=3,000 \text { and } X_{2}=6,000 \quad e_{L}=1 \text { and } e_{H}=1.1
$$

probability of $X_{1}=\left\{\begin{array}{cc}\frac{1}{2} & \text { if } e=1 \\ \frac{1}{40} & \text { if } e=1.1\end{array} \quad U_{P}(\$ m)=m \quad U_{A}(m, e)=\frac{1}{e} \ln (m)\right.$
A contract is a pair $\left(w_{1}, w_{2}\right)$

- w_{1} is the payment to the Agent if the outcome is X_{1}
- w_{2} is the payment to the Agent if the outcome is X_{2}

$$
w_{1} \quad w_{2}
$$

Fixed-wage contract: $C=(920,920)$

Agent's expected utility: $\quad U_{A}(m, e)=\frac{1}{e} \ln (m)$

- If Agent chooses $e=1$ then $p_{1}=\frac{1}{2} \quad U_{A}=\ln (920)=6.82$
- " $e=1.1$ " $P_{1}=\frac{1}{40} \quad U_{A}=\underbrace{\frac{1}{1.1}}_{\frac{10}{11}} \ln (920)=6.2$

The Agent will choose $e=1$ (low effort)

The Principal's expected utility is

$$
\frac{1}{2}(3,000-920)+\frac{1}{2}(6,000-920)=3580
$$

Variable-wage contract: $D=(200,2,000)$

Agent's expected utility: $\quad U_{A}(m, e)=\frac{1}{e} \ln (m)$

- if $e=1 \quad\left(\begin{array}{cc}200 & 2,000 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \quad E U_{A}=\frac{1}{2} \frac{1}{1} \ln (200)+\frac{1}{2} \frac{1}{1} \ln (2000)=$
. if $e=1.1 \quad\left(\begin{array}{ll}200 & 2000 \\ \frac{1}{40} & \frac{39}{40}\end{array}\right) \quad E U_{A}=\frac{1}{40} \frac{1}{1.1} \ln (200)+\frac{39}{40} \frac{1}{1.1} \ln (2000)=$
The Agent chooses $\frac{1}{6.1}$ 6.45
$=$
6.86

$$
e=1.1
$$

The Principal's expected utility is probability of $X_{1}=\left\{\begin{array}{cc}\frac{1}{2} & \text { if } e=1 \\ \frac{1}{40} & \text { if } e=1.1\end{array}\right.$

$$
\frac{1}{40}(3,000-200)+\frac{39}{40}(6,000-2,000)=3,970
$$

Contract D Pareto dominates contract C even though it does not guarantee a fixed income to the risk-averse person (the Agent).

$$
\begin{aligned}
& x_{1}=3,000 \quad x_{2}=6,000 \\
& (1,500,1,000) \text { below } 45^{\circ} \text { line }
\end{aligned}
$$

For now on we will focus on the following case:

- two possible outcomes: $0<\$ X_{1}<\$ X_{2}$
- two possible levels of effort for the Agent: $0<e_{L}<e_{H}$
- probability of $X_{1}=\left\{\begin{array}{ll}p_{1}^{L} & \text { if } e_{L} \\ p_{1}^{H} & \text { if } e_{H}\end{array}\right.$ with $0<p_{1}^{H}<p_{1}^{L}<1$
- the Principal is risk neutral: $U_{P}(\$ m)=m$
- the Agent's utility function is: $u_{A}(m, e)=\left\{\begin{array}{ll}U_{A}(m) & \text { if } e=e_{L} \\ U_{A}(m)-c & \text { if } e=e_{H}\end{array}\right.$ with $c>0$ and $U_{A}(m)$ strictly increasing and strictly concave c is utility cost of effort

Proposition. Any contract|below the 45° line, that is, any contract
$\left(w_{1}, w_{2}\right)$ with $w_{1} \geq w_{2}$, is Pareto inefficient: it is Pareto dominated by
a contract on the 45° line.

Step 1. Show that if $C=\left(w_{1}^{C}, w_{2}^{C}\right)$ is such that $w_{1}^{C} \geq w_{2}^{C}$ then the Agent under contract C will choose low effort e_{L}.

$$
u_{A}(m, e)= \begin{cases}U_{A}(m) & \text { if } e=e_{L} \\ U_{A}(m)-c & \text { if } e=e_{H}\end{cases}
$$

STEP 1: show that with contract C the Agent chooses e_{L}

$$
\begin{aligned}
& \text { i.e. } E U_{A, e_{L}}(C)>E U_{A, e_{H}}(C) \quad \text { or } E U_{A, e_{L}}(c)-E U_{A, e_{H}}(c)>0 \\
& P_{1}^{L} U_{A}\left(w_{1}^{c}\right)+\left(1-P_{1}^{L}\right) U_{A}\left(w_{2}^{c}\right)-[\underbrace{p_{1}^{H}\left[U_{A}\left(w_{1}^{c}\right)-c\right]+\left(1-P_{1}^{H}\right)\left(U_{A}\left(w_{2}^{c}\right)-c\right)}_{E U_{A, e_{H}}(c)}]
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{P^{P_{1}^{L} U_{A}\left(w_{1}^{c}\right)}+\underbrace{V_{A}\left(\omega_{2}^{c}\right)}-P_{1}^{L} V_{A}\left(w_{2}^{c}\right)}_{E U_{A_{1} C_{2}}(c)}= \\
& {[\underbrace{P_{1}^{H} U_{A}\left(W_{1}^{c}\right)}-P^{H} C+\underbrace{V_{A}\left(W_{2}^{c}\right)}-c-\underbrace{P_{1}^{H} U_{A}\left(W_{2}^{c}\right)}+P_{1}^{H}]} \\
& =\underbrace{\left(P_{1}^{L}-P_{1}^{H}\right.}_{>0}) U_{A}\left(W_{1}^{c}\right)-\underbrace{\left(P_{1}^{L}-P_{1}^{H}\right.}_{>0}) U_{A}\left(W_{2}^{c}\right)+C \\
& =\underbrace{\left(p_{1}^{L}-p_{1}^{H}\right.}_{>0}) \underbrace{\left[U_{A}\left(w_{1}^{C}\right)-U_{A}\left(w_{2}^{C}\right)\right]}_{C \text { is below } 45^{\circ} \text { line }}+\underbrace{c}_{0}>0 \\
& W_{1}{ }^{c}>W_{2}{ }^{c} \\
& \text { so } \quad V_{A}\left(w_{1}^{c}\right)>V_{A}\left(w_{2}^{c}\right)
\end{aligned}
$$

