Principal-Agent contracts
Principal hires Agent to perform a task
Outcome can be \$X, or \$X_2 with

$$X_1 < X_2$$

Contract: (W_1, W_2)
 $\int payment to Agent if X_2$
payment to Agent if X_2
 $Probabilities: X_1 = X_2$
 $P = 1-P$
 $Fixed$

Moral hazard in Principal-Agent relationships

PRINCIPAL	AGENT	AGENT'S ACTION NOT OBSERVED BY THE PRINCIPAL
Owner of firm	Manager	Amount of time/effort spent running the firm
Client	Lawyer	Amount of time/care devoted to case
Client	Doctor	Amount of time/care devoted to study of patient's symptoms
Land owner	Farmer	Farming effort
Landlord	Renter	Upkeep of building

The outcome is uncertain and is affected by the level of effort exerted by the Agent.

Two possible outcomes:

$$X_1 < X_2$$

Two possible levels of effort for the Agent:

ец low effort ен high effort

probability of $X_1 =$

$$0 < P_1^H < P_1^L < 1$$

probability of X_7 if Agent
chooses e_H

- the Principal is risk neutral: $U_P(\$m) = m$
- the Agent is risk averse and dislikes effort: $U_A(m, e)$

$$\frac{\partial V_A}{\partial m} > 0$$
, $\frac{\partial^2 V_A}{\partial m^2} < 0$, $\frac{\partial V_A}{\partial e} < 0$ $(V_A (m, e_H) < V_A (m, e_L))$

The analysis of optimal risk-sharing taught us that when the Principal is risk neutral and the Agent is risk averse, Pareto efficiency requires that the Agent be paid a fixed wage. Every fixed-wage contract is Pareto efficient.

EXAMPLE

$$X_{1} = 3,000 \text{ and } X_{2} = 6,000 \qquad e_{L} = 1 \text{ and } e_{H} = 1.1$$

probability of $X_{1} = \begin{cases} \frac{1}{2} & \text{if } e = 1\\ \frac{1}{40} & \text{if } e = 1.1 \end{cases} \quad U_{P}(\$m) = m \qquad U_{A}(m,e) = \frac{1}{e}\ln(m)$

A contract is a pair (w_1, w_2)

- W_1 is the payment to the Agent if the outcome is X_1
- W_2 is the payment to the Agent if the outcome is X_2

 $W_1 \quad W_2$ Fixed-wage contract: C = (920, 920)

Agent's expected utility:

$$U_{A}(m,e) = \frac{1}{e}\ln(m)$$
• if Agent chooses $e = 1$ then $P_{1} = \frac{1}{2}$ $U_{A} = ln(920) = 6.82$
• ''
$$e = 1.1$$
 ''
$$P_{1} = \frac{1}{40}$$

$$U_{A} = \frac{1}{1.1} ln(920) = 6.2$$

$$\frac{10}{11}$$
The Agent will choose $e = 1$ (low effort)

The Principal's expected utility is

probability of
$$X_1 = \begin{cases} \frac{1}{2} & \text{if } e = 1 \\ \frac{1}{40} & \text{if } e = 1.1 \end{cases}$$

$$\frac{1}{2} (3,000 - 920) + \frac{1}{2} (6,000 - 920) = 3580$$

Variable-wage contract: D = (200, 2, 000)

Agent's expected utility:
$$U_{A}(m,e) = \frac{1}{e}\ln(m)$$

• if $e = 1$ $\begin{pmatrix} 200 & 2,000 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $E U_{A} = \frac{1}{2} \frac{1}{1} \ln(200) + \frac{1}{2} \frac{1}{1} \ln(200) =$
6.45
. if $e = 1.1 \begin{pmatrix} 200 & 2000 \\ \frac{1}{40} & \frac{39}{40} \end{pmatrix}$ $E U_{A} = \frac{1}{40} \frac{1}{1.1} \ln(200) + \frac{39}{40} \frac{1}{1.1} \ln(200) =$
The Agent chooses $E = 1.1$

The Principal's expected utility is

probability of
$$X_1 = \begin{cases} \frac{1}{2} & \text{if } e = 1 \\ \frac{1}{40} & \text{if } e = 1.1 \end{cases}$$

$$\frac{1}{40} \left(3,000 - 200 \right) + \frac{39}{40} \left(6,000 - 2,000 \right) = 3,970$$

Contract D Pareto dominates contract C even though it does not guarantee a

fixed income to the risk-averse person (the Agent).

 $X_1 = 3,000$ $X_2 = 6,000$ (1,500, 1,000) below 45° line For now on we will focus on the following case:

- two possible outcomes: $0 < \$X_1 < \X_2
- two possible levels of effort for the Agent: $0 < e_L < e_H$

• probability of
$$X_1 = \begin{cases} p_1^L & \text{if } e_L \\ p_1^H & \text{if } e_H \end{cases}$$
 with $0 < p_1^H < p_1^L < 1$

- the Principal is risk neutral: $U_P(\$m) = m$
- the Agent's utility function is: $u_A(m,e) = \begin{cases} U_A(m) & \text{if } e = e_L \\ U_A(m) c & \text{if } e = e_H \end{cases}$ with c > 0 and C_{ij} utility cost of effort $U_A(m)$ strictly increasing and strictly concave i.e. A is risk avera

Proposition. Any contract below the 45° line, that is, any contract

(w_1, w_2) with $w_1 \ge w_2$, is Pareto inefficient: it is Pareto dominated by

a contract on the 45° line.

$$= \underbrace{P_{i}^{L} U_{A}(w_{i}^{c}) + \underbrace{U_{A}(w_{2}^{c}) - P_{i}^{L} U_{A}(w_{2}^{c})}_{EU_{A, e_{L}}(c)} + \underbrace{V_{A}(w_{2}^{c}) - c - P_{i}^{H} U_{A}(w_{2}^{c}) + P_{i}^{A}}_{EU_{A, e_{L}}(c)} + \underbrace{P_{i}^{H} U_{A}(w_{1}^{c}) - P_{i}^{H} + \underbrace{V_{A}(w_{2}^{c}) - c - P_{i}^{H} U_{A}(w_{2}^{c}) + P_{i}^{A}}_{ic}}_{>0}$$

$$= (P_{i}^{L} - P_{i}^{H}) U_{A}(w_{1}^{c}) - (P_{i}^{L} - P_{i}^{H}) U_{A}(w_{2}^{c}) + c$$

$$>0 \qquad >0$$

$$= (P_{i}^{L} - P_{i}^{H}) [U_{A}(w_{1}^{c}) - U_{A}(w_{2}^{c})] + c \qquad >0$$

$$>0 \qquad >0$$

$$C \text{ is below } 4s^{v} \lim_{i \to v} \frac{V_{i}^{c}}{V_{i}^{c}} > \underbrace{V_{i}^{c}}_{i \to v_{2}^{c}}$$

$$= \underbrace{V_{i}^{L} - V_{i}^{H}}_{SO} U_{A}(w_{1}^{c}) > \underbrace{V_{A}(w_{2}^{c})}_{SO} + \underbrace{V_{i}^{c}}_{SO} = \underbrace{V_{i}^{c}}_{SO} U_{A}(w_{1}^{c}) > \underbrace{V_{i}^{c}}_{SO} (w_{2}^{c})$$