ECN 106: Decision Making Professor Giacomo Bonanno SPRING 2025 - FIRST MIDTERM EXAM: | ANSWERS for VERSION 1

1. (a) 3 points per correct answer, -2 points per wrong answer. Since a weakly (but not strictly) dominates b it must be one of the following two cases.

Case 1: $z_1 > z_3$ and $z_2 \sim z_4$. Case 2: $z_1 \sim z_3$ and $z_2 > z_4$. Thus only rankings 7, 8 and 9 are compatible

- 1. $z_1 \succ z_2 \succ z_3 \succ z_4$ 2. $z_1 \succ z_3 \succ z_2 \succ z_4$ 3. $z_1 \succ z_4 \succ z_3 \sim z_2$ 4. $z_1 \sim z_2 \succ z_3 \sim z_4$ 5. $z_4 \succ z_1 \sim z_2 \succ z_3$ 6. $z_2 \succ z_1 \succ z_3 \sim z_4$ 7. $z_1 \sim z_2 \succ z_3 \sim z_4$ 9. $z_2 \sim z_4 \sim z_3 \sim z_4$
- (b) 2 points per correct answer, -1 point per wrong answer. The second statement implies that $z_1 > z_3$ so that it must be that $z_2 \sim z_4$. Thus there are only 5 possible rankings:

best
$$\begin{pmatrix} z_2, z_4 \\ z_1 \\ z_3 \end{pmatrix}$$
, $\begin{pmatrix} z_1, z_2, z_4 \\ z_3 \end{pmatrix}$, $\begin{pmatrix} z_1 \\ z_2, z_4 \\ z_3 \end{pmatrix}$, $\begin{pmatrix} z_1 \\ z_3, z_2, z_4 \end{pmatrix}$, $\begin{pmatrix} z_1 \\ z_3 \\ z_2, z_4 \end{pmatrix}$

or, in the alternative notation, $z_2 \sim z_4 \succ z_1 \succ z_3$, $z_1 \sim z_2 \sim z_4 \succ z_3$, $z_1 \succ z_2 \sim z_4 \succ z_3$, $z_1 \succ z_2 \sim z_3 \sim z_4$, $z_1 \succ z_3 \succ z_2 \sim z_4$.

- **2.** (a) The expected value of the lottery following M is $\frac{3}{10}(320) + \frac{2}{10}(80) = 112$. The expected value of the lottery following T is 320p. Thus it must be that $320p \ge 112$, that is, $p \ge \frac{7}{20} = 0.35 = 35\%$.
 - (b) When p = 40%, the expected value of the lottery following T is $320(\frac{4}{10}) = 128$. Thus it must be that $X \ge 128$.
 - (c) When X = 120, choosing A and then M is strictly dominated by choosing D. Thus (1) if 320 p < 120, that is, if p < 0.375, Julia will choose D,
 - (2) if 320p > 120, that is, if p > 0.375, Julia will choose first A and then T
 - (3) if 320p = 120, that is, if p = 0.375, Julia will either choose D or she will choose first A and then T (she will be indifferent between the two courses of action)
 - (d) When p = 20% the expected value of the lottery following T is $320(\frac{2}{10}) = 64$, so that choosing first A and then T is strictly dominated by choosing first A and then M. Thus (1) if X > 112, Julia will choose D,
 - (2) if X < 112 Julia will choose first A and then M
 - (3) if X = 122 Julia will either choose D or she will choose first A and then M (she will be indifferent between the two courses of action)
- **3.** You can answer this question with or without a utility function.

A. Answer without using a utility function

- (a) a_3 strictly dominates a_1
 - a_4 weakly dominates a_1 , but the converse is not true

[For every other pair of actions x and y it is neither the case that x dominates y nor the case that y dominates x.]

- **(b)** The worst outcome with a_1 is z_1 , the worst outcome with a_2 is z_5 , the worst outcome with a_3 is z_7 and the worst outcome with a_4 is z_{10} . The best of these are z_5 and z_{10} . Thus the Maximin criterion selects $\{a_2, a_4\}$.
- (c) The Leximin solution is a_2 .

B. Answer using a utility function

Using the following utility function:

re-write the decision problem as follows:

- (a) a_3 strictly dominates a_1
 - a_4 weakly dominates a_1 , but the converse is not true [For every other pair of actions x and y it is neither the case that x dominates y nor the case that y dominates x.]
- (b) The lowest utility from a_1 is 0, the lowest utility from a_2 is 2, the lowest utility from a_3 is 1 and the lowest utility from a_4 is 2. Thus the Maximin criterion selects $\{a_2, a_4\}$.
- (c) The Leximin solution is a_2 .
- **4.** (a) For Bob, the expected utility of choice A is $\frac{1}{6}5 + \frac{3}{6}10 + \frac{2}{6}4 = \frac{43}{6} = 7.167$. The expected utility of choice B is $\frac{1}{6}8 + \frac{3}{6}9 + \frac{2}{6}3 = \frac{41}{6} = 6.833$. The expected utility of choice C is $\frac{1}{6}2 + \frac{3}{6}6 + \frac{2}{6}7 = \frac{34}{6} = 5.667$. Thus Bob, too, will choose A.

basic outcome	\$100	\$81	\$64	\$49	\$36	\$25	\$16	\$9	\$4
utility	1	7 /8	<u>6</u> 8	<u>5</u> 8	$\frac{4}{8}$	$\frac{3}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	0