ECON 106: DECISION MAKING

PRACTICE FINAL: ANSWERS

1.

(a) The possible outcomes are:

Z_1	Stays home, gets A
z_2	Stays home, gets C
Z_3	At party, good time with Kate, gets C
z_4	At party, good time with Kate, gets F
Z_5	At party, rejected, gets C
z_6	At party, rejected, gets F
z_7	At party, not approached by Kate, gets C
Z_8	At party, not approached by Kate, gets F

(b) Each state specifies whether the exam is easy or difficult, whether Kate is attracted to him or not and whether Kate is shy or not. Thus there are 8 states:

$S_{e,a,s}$	easy, attracted, shy
$S_{e,a,ns}$	easy, attracted, not shy
$S_{e,na,s}$	easy, not attracted, shy
$S_{e,na,ns}$	easy, not attracted, not shy
$S_{ne,a,s}$	not easy, attracted, shy
$S_{ne,a,ns}$	not easy, attracted, not shy
$S_{ne,na,s}$	not easy, not attracted, shy
$S_{ne,na,ns}$	not easy, not attracted, not shy

The decision problem can the be written as follows:

	$S_{e,a,s}$	$S_{e,a,ns}$	$S_{e,na,s}$	$S_{e,na,ns}$	$S_{ne,a,s}$	$S_{ne,a,ns}$	$S_{ne,na,s}$	$S_{ne,na,ns}$
Stay home	z_1	z_1	z_1	z_1	z_2	Z_2	Z_2	z_2
Go to party, approach	Z_3	Z_3	Z_5	Z_5	Z_4	Z_4	<i>Z</i> ₆	Z_6
Go to party, be cool	Z_7	Z_3	Z_7	Z_7	Z_8	Z_4	Z_8	z_8

(c) We can take values from 0 to 5 as follows:

Outcome
$$z_1$$
 z_2 z_3 z_4 z_5 z_6 z_7 z_8

Utility 4 2 5 3 0 0 2 1

No: for every two acts x and y, there is a state where x is better than y and there is another state where y is better than x.

2.

(a)
$$E = \{s_{e,a,s}, s_{e,a,ns}, s_{e,a,ns}, s_{e,na,ns}\}, \neg E = \{s_{ne,a,s}, s_{ne,a,ns}, s_{ne,a,ns}, s_{ne,na,ns}\}$$

 $S = \{s_{e,a,s}, s_{e,na,s}, s_{ne,a,s}, s_{ne,na,s}\}, \neg S = \{s_{e,a,ns}, s_{e,na,ns}, s_{ne,a,ns}, s_{ne,na,ns}\}$
 $A = \{s_{e,a,s}, s_{e,a,ns}, s_{ne,a,s}, s_{ne,a,ns}\}, \neg A = \{s_{e,na,s}, s_{e,na,ns}, s_{ne,na,s}, s_{ne,na,ns}\}$.

- **(b)** $P(E \mid S) = P(E)$, $P(E \mid \neg S) = P(E)$, $P(E \mid A) = P(E)$, $P(E \mid \neg A) = P(E)$, $P(S \mid E) = P(S)$, $P(S \mid \neg E) = P(S)$, etc.
- (c) $P(E \cap S) = P(E) P(S) = 0.4(0.8) = 0.32$ $P(E \cap A) = P(E) P(A) = 0.4(0.5) = 0.2$ by independence $P(A \cap S) = P(A) P(S) = 0.5(0.8) = 0.4$ by independence

3.

(e) Stay home =
$$\begin{pmatrix} z_1 & z_2 \\ 0.4 & 0.6 \end{pmatrix}$$
, To party/approach = $\begin{pmatrix} z_3 & z_4 & z_5 & z_6 \\ 0.2 & 0.3 & 0.2 & 0.3 \end{pmatrix}$
To party/cool = $\begin{pmatrix} z_3 & z_4 & z_7 & z_8 \\ 0.04 & 0.06 & 0.36 & 0.54 \end{pmatrix}$.

(f) We can normalize the utility function U so that $U(z_3)=1$ and $U(z_5)=U(z_6)=0$. Since Jonathan is indifferent between $\begin{pmatrix} z_4 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} z_3 & z_5 \\ 0.6 & 0.4 \end{pmatrix}$, it must be that $U(z_4)=0.6U(z_3)+0.4U(z_5)=(0.6)1+(0.4)0=0.6$. Thus the expected utility of party/approach is $0.2U(z_3)+0.3U(z_4)+0.2U(z_5)+0.3U(z_6)=0.2(1)+0.3(0.6)+0.2(0)+0.3(0)=0.38$. Hence, since he is indifferent between party/approach and staying home, it must be that the

Hence, since he is indifferent between party/approach and staying home, it must be that the expected utility of staying home is equal to 0.38, that is, $0.4U(z_1) + 0.6U(z_2) = 0.38$. Thus all we know about the utility function is the following, with

$$1 > x > 0.6 > y > z > 0$$
 and $0.4x + 0.6y = 0.38$

Outcome	Utility
Z_3	1
Z_1	X
Z_4	0.6
Z_2	у
Z_7	у
Z_8	z
Z_5	0
Z_6	0

- (g) Two questions: (1) what value of p would make you indifferent between z_1 for sure and the lottery $\begin{pmatrix} z_3 & z_5 \\ p & 1-p \end{pmatrix}$? (2) what value of q would make you indifferent between z_8 for sure and the lottery $\begin{pmatrix} z_3 & z_5 \\ q & 1-q \end{pmatrix}$? The answer to the first question gives the value of $U(z_1)$ and this, together with the equation $0.4U(z_1)+0.6U(z_2)=0.38$ enables you to figure out the value of $U(z_2)$. The answer to the second question gives the value of $U(z_8)$.
- (h) Then Jonathan's utility function is

Outcome
 Utility

$$z_3$$
 1

 z_1
 0.8

 z_4
 0.6

 z_2
 0.1

 z_7
 0.1

 z_8
 0.05

 z_5
 0

 z_6
 0

Thus
$$EU(\text{stay home}) = 0.4U(z_1) + 0.6U(z_2) = 0.4(0.8) + 0.6(0.1) = 0.38$$

$$EU(\text{party/approach}) = 0.2U(z_3) + 0.3U(z_4) + 0.2U(z_5) + 0.3U(z_6)$$

$$= 0.2(1) + 0.3(0.6) + 0.2(0) + 0.3(0) = 0.38$$

$$EU(\text{party/cool}) = 0.04U(z_3) + 0.06U(z_4) + 0.36U(z_7) + 0.54U(z_8)$$
$$= 0.04(1) + 0.06(0.6) + 0.36(0.1) + 0.54(0.05) = 0.139$$

Thus Jonathan will either stay home or go to the party and approach Kate.

- **4.** (A) Since the discount rate is $\rho = \frac{1}{9}$, the discount factor is $\delta = \frac{1}{1+\rho} = \frac{9}{10} = 0.9$. Thus
 - (a) $U_0(\$100 \text{ in 6 years}) = (0.9)^6(100) = 53.14 \text{ and}$ $U_0(\$200 \text{ in 8 years}) = (0.9)^8(200) = 86.09 \text{. Thus she chooses to get $200 in 8 years.}$
 - **(b)** U_6 (\$100 now) = 100 and U_6 (\$200 in 2 years) = $(0.9)^2(200) = 162$. Thus she will choose to get \$200 two years later.
 - (c) Yes, her preferences are time consistent: she ranks the alternatives the same way at date 0 and at date 6.

(B) (d) $U_0(\$100 \text{ in 6 years}) = (0.6)(0.9)^6(100) = 31.89 \text{ and}$ $U_0(\$200 \text{ in 8 years}) = (0.6)(0.9)^8(200) = 51.66. \text{ Thus she chooses to get $200 in 8 years.}$

- (e) $U_6(\$100 \text{ now}) = 100 \text{ and } U_6(\$200 \text{ in 2 years}) = (0.6)(0.9)^2(200) = 97.2$. Thus she will change her mind and choose \$100 right away.
- (f) No, because she changes her initial plan after 6 years.
- **5.** (a) With the Borda count and sincere voting x gets 22 points, a gets 17, b gets 16 and c gets 15. Thus the social ranking is

 $\boldsymbol{\mathcal{X}}$

a

b

c

If, after the election, x drops out then the next best candidate will be chosen, that is candidate a.

(b) Eliminating *x* from the above profile we have:

1	2	3	4	5	6	7
С	а	b	С	а	b	С
b	С	а	b	С	а	b
а	b	С	а	b	С	а

and using the Borda count with this profile we have that a gets 13 points, b gets 14 and c gets 15. Thus the social ranking becomes

c

b

a

that is, a complete reversal of the previous one! The winner is now c, who was the lowest ranked candidate before!

6. (a) When the range of the SCF has only two alternatives, plurality voting satisfies Unanimity, Non-dictatorship and Non-manipulability.

(l:)						T							
2's → 1's ↓	abc	acb	bac	bca	cab	cba	2's → 1's ↓	abc	acb	bac	bca	cab	cba	
abc	а	а	а	а	а	а	abc	а	а	а	а	а	а	
acb	а	а	а	а	а	а	acb	а	а	а	а	а	а	
bac	а	а	b	b	b	b	bac	a	а	b	b	b	b	
bca	а	а	b	b	b	b	bca	а	а	b	b	b	b	
cab	а	а	С	С	С	С	cab	а	а	С	С	С	С	
cba	а	а	С	С	c	c	cba	a	а	c	c	С	c	
3 reports abc								3 reports acb						
2's → 1's ↓	abc	acb	bac	bca	cab	cba	2's → 1's ↓	abc	acb	bac	bca	cab	cba	
abc	а	а	b	b	а	а	abc	а	а	b	b	а	а	
acb	а	а	b	b	а	а	acb	а	а	b	b	а	а	
bac	b	b	b	b	b	b	bac	b	b	b	b	b	b	
bca	b	b	b	b	b	b	bca	b	b	b	b	b	b	
cab	С	С	b	b	С	С	cab	c	С	b	b	С	c	
cba	С	С	b	b	С	c	cba	С	С	b	b	С	С	
			3 repoi	rts bac			3 reports bca							
l's ↓	abc	acb	bac	bca	cab	cba	1's ↓	abc	acb	bac	bca	cab	cba	
abc	а	а	а	а	С	c	abc	а	а	а	а	С	c	
acb	а	а	а	а	С	С	acb	а	а	а	а	С	С	
bac	b	b	b	b	С	С	bac	b	b	b	b	С	С	
bca	b	b	b	b	С	c	bca	b	b	b	b	С	c	
cab	С	С	С	С	С	c	cab	С	С	С	С	С	c	
cba	C	С	С	С	C	c	cba	c	С	С	C	С	С	
3 reports cab										3 repo	rts cba			

This SCF satisfies Freedom of Expression, Unanimity and Non-dictatorship but violates Non-manipulability.

- **7.** (a) For Ann $U_0(\$100 \text{ in 4 years}) = (0.9)^4(\sqrt{100}) = 6.561$ and $U_0(\$400 \text{ in 6 years}) = (0.9)^6(\sqrt{400}) = 10.629$. Thus she chooses to get \$400 in 6 years.
 - **(b)** For Christina, U_0 (\$100 in 4 years) = $(0.7)(0.8)^4(\sqrt{100})$ = 2.867 and U_0 (\$400 in 6 years) = $(0.7)(0.8)^6(\sqrt{400})$ = 3.67. Thus she too chooses to get \$400 in 6 years.
 - (c) For Ann U_4 (\$100 now)= $\sqrt{100}$ = 10 and U_4 (\$400 in 2 years) = $(0.9)^2(\sqrt{400})$ = 16.2. Thus she chooses \$400 in two years.
 - (d) For Christina U_4 (\$100 now)= $\sqrt{100}$ = 10 and U_4 (\$400 in 2 years) = $(0.7)(0.8)^2(\sqrt{400})$ = 8.96. Thus she changes her mind and chooses to get \$100 right away.
 - (e) Yes, because after 4 years she confirms her earlier choice.
 - (f) No, because after 4 years she changes her initial plan.