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People tend to be risk-averse towards gains, but risk-loving towards losses. 

Can such an attitude be compatible with expected utility? 
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Suppose that she prefers the sure gain: she prefers A. Then she displays risk-aversion towards 

gains (the expected value of these two options is the same). .  
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.  

Suppose that she prefers the risky prospect: she prefers D. Then she is risk-loving towards losses 

(the expected value of these two options is the same).  

Is there a von Neumann-Morgenstern utility function that is consistent with these choices? 
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Suppose that her initial wealth is $100. 
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Hence it is possible for an expected-utility maximizing individual to display risk aversion towards a gain and risk love towards a symmetric loss.  
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However, this cannot happen at every wealth level.  

Beginning wealth: $200.  Choice between  
$50
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Beginning wealth: $200.  Choice between  
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:
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Can she prefer A to B and also D to C? Let’s see.  
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Since she prefers D to C, she prefers  
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Thus people who are consistently (that is, at every initial level of wealth) risk-

averse towards gains and risk-loving towards losses cannot satisfy the axioms 

of expected utility. If those axioms capture the notion of rationality, then those 

people are irrational. 
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The general case (non-monetary outcomes) 

 
31 1 1

16 16 2 4

31 2 4

1 2 3 4

5 6 7 8

probability 
   state 
act 

ss s s

a z z z z
b z z z z





                  suppose:                      

8

4

5

1 2

3 6

7

utility
best 96

80
48

, 32
, 16

worst 0

z
z
z

z z
z z

z

 

      then     

31 1 1
16 16 2 4

31 2 4

probability 
   state 
act 

ss s s

a
b





 

  

V V

100 9600
100 8000
100 4800
100 3200
100 1600

100 0

32 32 16 80

48 16 0 96

EU at 32 32 16 80 2 6 8 20

3600EV b 48 7616 96 3 3 24 30

3000



Page 2 of 6 
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In the absence of further information. 
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Suppose now that the DM is offered perfect information for free.  
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 If told 1s  she chooses        and gets utility   

 If told 2s  she chooses        and gets utility   

 If told 3s  she chooses        and gets utility   

 If told 4s  she chooses        and gets utility   
 

 

Her expected utility under free perfect information is  

Free perfect information means an increase in expected utility of  
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How to monetize the value of information in the general case 
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To avoid triviality let us assume that it is not the case that one act dominates the other. 

Assume that  

1 3 4 2( ) ( ) and ( ) ( )U y U y U y U y   

Not enough to tell which act the DM would choose. Assume that he would choose act a: 

1 2 3 4( ) (1 ) ( ) ( ) (1 ) ( )qU y q U y qU y q U y       

 What is the maximum price that the DM would be willing to pay for perfect information? 

Each outcome iy  should be thought of a list of all the things that the DM cares about (wealth is just one of them). 
Separate from each iy  the wealth part and write the outcome as ( , )i iz W  where iz  is that part of iy  that does not refer 
to the DM’s wealth and iW  is the DM’s wealth in outcome iy : 
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Our assumption is that   1 3 4 2( ) ( ) and ( ) ( )U y U y U y U y    thus 

1 1 3 3 4 4 2 4( , ) ( , ) and ( , ) ( , )U z W U z W U z W U z W   

What would he choose if, having paid $p for perfect information, he were informed that the state was 1s ?  In 

general, we cannot infer from 1 1 3 3( , ) ( , )U z W U z W  that 1 1 3 3( , ) ( , )U z W p U z W p   . Assume this, however and, 

similarly, 4 4 2 2( , ) ( , )U z W p U z W p   . Then if informed that 1s  the DM would choose       and if informed that 

2s  then he would choose        .  Thus with perfect information his expected utility would be 

 

The maximum price the DM is willing to pay for perfect information is that value of p that solves the equation: 

 

 

In Chapter 9 of the book (Section 9.3) there is a detailed (more complex) example along these lines. 
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