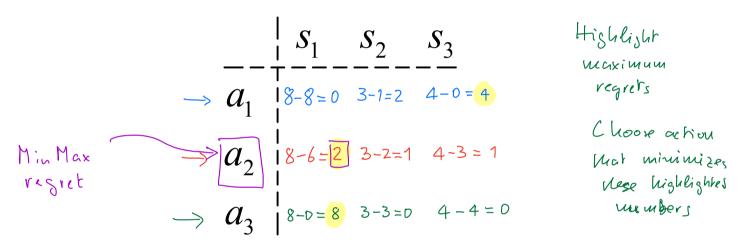

Hurwicz index

$$\frac{-\frac{1}{8} \cdot \frac{s_1}{8} - \frac{s_2}{1} - \frac{s_3}{0}}{a_2 \mid 6 \quad 2 \quad 3} \\
a_3 \mid 0 \quad 3 \quad 4$$

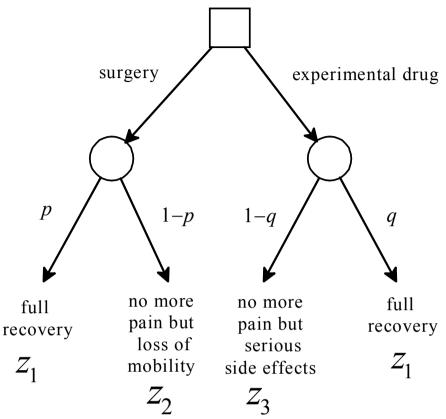
$$H_{\alpha}(a_1) = 0\alpha + 8(1-\alpha) = 8-8\alpha$$

$$H_{\alpha}(a_2) = 2\alpha + 6(1-\alpha) = 6-4\alpha$$


$$H_{\alpha}(a_3) = 0\alpha + 4(1-\alpha) = 4-4\alpha$$

Note: the Hurwicz index is invariant to allowed transformations of the utility function.

MinMax REGRET


Define the **regret of taking action** a **under state** s as the difference between the maximum utility you could have got under state s (by taking the best action for that state) and the utility that you get with action a. We can then construct a **regret table:**

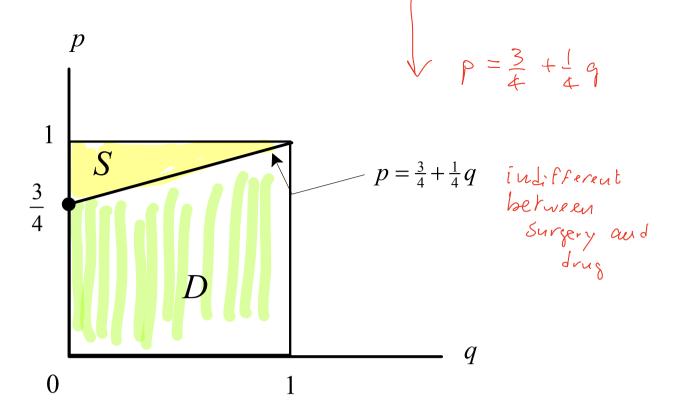
If I had chosen an alternative utility function, would I have reached the same conclusion in terms of MinMaxRegret? Consider a new decision problem:

ا	S_1	S_2	S_3				$ S_1 $	S_2	S_3						
$a_1 ightharpoonup$	0	2		-		a_1	$\begin{bmatrix} \\ z_1 \end{bmatrix}$								
$a_2 \mid a_2$	2	1	1			a_2	i I Z ₄	Z_5	Z_6	W	e infer t	hat the	rank	ing is	
$a_3 \mid 3$	8	0	0			a_3	i Z ₇	Z_8	Z_9			1.6.6	,	_ 1)(2) 1 6
								U	V			V	Z) =	<u>.</u> a ()(2)+b a>
				best	/		8	15	5	Сиоон а=			a=2		
						23		4	7					b=-1	
						22	124	2	3						
					worst		28, Zq		1	1					
		S	1	S_2	S_3				$ S_1 $	S_2	S_3				
ukilly rable Using U	\overline{a}_1				4	uh	lity	\overline{a}_1	-1	3	7				
	a_2		2	1	1	ta	blé egret u	a_2	-1 -1	1	1				
		8	3	0	0	uh			15						
		l	S_1		S_2	S_3					S_1	S		S_3	_
reguet Using U asing d	\overline{a}_1	- <u>i</u> -			0		0 0	_		$\overline{a_1}$	16		D	0	
		-			1	3		1	regret:		12		2	6	
	a_3	i	0		2		4	t	ntiy V	a_2	0		7	8	

Example: knee injury

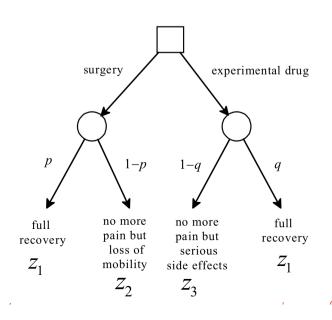
Suppose that:

Mormelized U is such that


1 best z_1 100 $z_3 \sim \begin{pmatrix} z_1 & z_2 \\ s & 1-s \end{pmatrix}$ $v \text{ worst } z_2 = 0$ $v \text{ Auswer is } s = \frac{3}{4}$

What value of s

The expected utility of surgery is $\rho 100 + (1-\rho)0 = 100 \rho$ the expected utility of taking the drug is q 100 + (1-q) 75 = 75 + 25q


So if you know the values of p and q then your optimal decision is:

- surgery if $|00\rangle$ 75 + 25 g
- drug if 75 + 259 > 100 p
- either surgery or drug is 100p = 75 + 25q

Suppose that the values of p and q are not available

$$(S,D)$$
: Sugery would be successful and drug would be successful (7S,D): Surgery would Not be successful, drug would (S,D) : $($

best
$$z_1$$
 100

$$z_3 = 75$$

Replacing outcomes with utilities:

worst
$$z_2$$
 0

The corresponding regret table is:

What about the Hurwicz index?

$$H_{\alpha}(Drug) = H_{\alpha}(Surgery) = 0.4 + 100(1-4)$$

$$75 \alpha + 100(1-4) =$$

$$= 100 - 25 \alpha$$