CASE 1.2: risk aversion

When a person is risk averse then it is no longer true that the analysis in terms of changes in wealth and the analysis in terms of total wealth are equivalent.

probability	$\frac{4}{5}$	$\frac{1}{5}$
state \rightarrow	<i>S</i> ₁	S_2
act ↓		
а	\$18	\$18
b	\$25	\$0

Suppose that the DM's von Neumann-Morgenstern utility-of-money function is: $U(\$x) = \sqrt{x}$ and suppose that the DM's initial wealth is \$600.

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

In terms of total wealth:

$\frac{4}{5}$	$\frac{1}{5}$	
<i>S</i> ₁	<i>S</i> ₂	
\$618	\$618	
\$625	\$600	
	<i>s</i> ₁ \$618	

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

Thus when we deal with risk aversion or risk love we need to reason in terms of **total wealth**.

Let us go back to the previous example, where the amounts are **changes** in wealth.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
act \downarrow			
а	\$4	\$36	\$244
b	\$8	\$201	\$18
С	\$124	\$12	\$24

Suppose that the DM's initial wealth is \$140 and her utility function is $U(\$x) = \sqrt{x}$. How much would she be willing to pay for perfect information?

STEP 1. First of all: expected utility is if she does not purchase information.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	S_1	<i>S</i> ₂	S ₃
act ↓			
а	\$144	\$176	\$384
b	\$148	\$341	\$158
С	\$264	\$152	\$164

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

 $\mathbb{E}[U(c)] =$

STEP 2. Calculate her expected utility if she purchases perfect information at price *p*.

• If I am told that the state is s_1 then I will choose and get a utility of	probability state \rightarrow	$\frac{1}{2}$ S_1	$\frac{1}{3}$ S_2	$\frac{1}{6}$ S_3
 If I am told that the state is s₂ then I will 	act ↓	51	3 ₂	53
choose and get a utility of	а	\$144	\$176	\$384
• If I am told that the state is s_3 then I will	b	\$148	\$341	\$158
choose and get a utility of	С	\$264	\$152	\$164

Expected utility if I purchase information is:

How much should one be prepared to pay for information? CASE 2: monetary outcomes and IMPERFECT information

CASE 2.1: risk neutrality

The amounts are **changes** in her wealth.

probability	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$
state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
act ↓				
a	\$16	\$36	\$100	\$12
b	\$10	\$64	\$18	\$120
С	\$104	\$12	\$24	\$0

STEP 0. Change the probabilities so that they have the same denominator:

prot)ab:	ılıt	V
r · ·			

state \rightarrow	S ₁	<i>s</i> ₂	<i>s</i> ₃	S_4
act ↓				
а	\$16	\$36	\$100	\$12
b	\$10	\$0	\$18	\$120
С	\$104	\$12	\$24	\$0

 $\mathbb{E}[a] =$

 $\mathbb{E}[b] =$

$\mathbb{E}[c] =$

Suppose now that Ann is offered, at price p, the following imperfect information:

 $\{\{s_1, s_2\}, \{s_3, s_4\}\}$

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	S_1	S_2	<i>s</i> ₃	S_4
act↓				
а	\$16	\$36	\$100	\$12
b	\$10	\$0	\$18	\$120
С	\$104	\$12	\$24	\$0

probability

		state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	
	If informed that $\{s_1, s_2\}$ then	act \downarrow			
•	If informed that $\{s_1, s_2\}$ then	a	\$16	\$36	
		b	\$10	\$0	
		С	\$104	\$12	
	$\mathbb{E}[a] =$				

 $\mathbb{E}[b] =$

$\mathbb{E}[c] =$

Thus she will choose and expect

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	S_1	S_2	<i>S</i> ₃	S_4
act↓				
а	\$16	\$36	\$100	\$12
b	\$10	\$0	\$18	\$120
С	\$104	\$12	\$24	\$0

probability

		state \rightarrow	<i>S</i> ₃	S_4
		act \downarrow		
•	If informed that $\{s_3, s_4\}$ then	a	\$100	\$12
		b	\$18	\$120
		С	\$24	\$0

 $\mathbb{E}[a] =$

 $\mathbb{E}[b] =$

 $\mathbb{E}[c] =$

Thus she will choose and expect

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	S_1	S_2	<i>S</i> ₃	S_4
act↓				
а	\$16	\$36	\$100	\$12
b	\$10	\$0	\$18	\$120
С	\$104	\$12	\$24	\$0

The probability of $\{s_1, s_2\}$ is and the probability of $\{s_3, s_4\}$ is

Thus the expected change in wealth with perfect information at price p is

Thus as long as

it is worth paying for the information.

CASE 2.2: risk aversion

Smaller example.

	probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
Changes in wealth:	state \rightarrow	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃
	act \downarrow			
	a	\$21	\$0	\$156
	b	\$0	\$125	\$0
	С	\$96	\$0	\$69

Assume: $U(\$x) = \sqrt{x}$ and initial wealth is \$100. Then

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃
act ↓			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃
act ↓			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 1. If she does **not purchase** information.

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

$\mathbb{E}[U(c)] =$

Thus she will choose

with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃
act ↓			
а	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

STEP 2. If she purchases information $\{\{s_1, s_2\}, \{s_3\}\}$ at price *p*.

• If informed that $\{s_1, s_2\}$ then the revised decision problem is:

probability

state \rightarrow	S ₁	S_2
act ↓		
а	\$121	\$100
b	\$100	\$225
С	\$196	\$100

 $\mathbb{E}[U(a)] =$

 $\mathbb{E}[U(b)] =$

$\mathbb{E}[U(c)] =$

Thus she will choose with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃
act↓			
a	\$121	\$100	\$256
b	\$100	\$225	\$100
С	\$196	\$100	\$169

• If informed that $\{s_3\}$ then she will choose with a utility of

Given the initial probabilities: $\begin{array}{ccc} \text{probability} & \frac{2}{9} & \frac{4}{9} & \frac{3}{9} \\ \text{state} \rightarrow s_1 & s_2 & s_3 \end{array}$ the probability of receiving

information $\{s_1, s_2\}$ is $\frac{6}{9} = \frac{2}{3}$ and the probability of receiving information $\{s_3\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price *p* is:

For example, if p = \$30 then

The maximum price the DM is willing to pay for information is given by the solution to:

Which is