CASE 1.2: risk aversion

When a person is risk averse then it is no longer true that the analysis in terms of changes in wealth and the analysis in terms of total wealth are equivalent.
$\left.\begin{array}{ccc}\text { probability } & \frac{4}{5} & \frac{1}{5} \\ \text { state } \rightarrow & s_{1} & s_{2} \\ \text { act } \downarrow & & \\ a & & \$ 18\end{array}\right) \$ 18$

Suppose that the DM's von Neumann-Morgenstern utility-of-money function is: $U(\$ x)=\sqrt{x}$ and suppose that the DM's initial wealth is $\$ 600$.
$\mathbb{E}[U(a)]=$
$\mathbb{E}[U(b)]=$

In terms of total wealth:

probability	$\frac{4}{5}$	$\frac{1}{5}$
state \rightarrow	s_{1}	S_{2}
act \downarrow		
a	$\$ 618$	$\$ 618$
b	$\$ 625$	$\$ 600$

$\mathbb{E}[U(a)]=$
$\mathbb{E}[U(b)]=$
Thus when we deal with risk aversion or risk love we need to reason in terms of total wealth.

Let us go back to the previous example, where the amounts are changes in wealth.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	S_{1}	S_{2}	S_{3}
act \downarrow			
a	$\$ 4$	$\$ 36$	$\$ 244$
b	$\$ 8$	$\$ 201$	$\$ 18$
c	$\$ 124$	$\$ 12$	$\$ 24$

Suppose that the DM's initial wealth is $\$ 140$ and her utility function is $U(\$ x)=\sqrt{x}$. How much would she be willing to pay for perfect information?

STEP 1. First of all: expected utility is if she does not purchase information.

probability	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
state \rightarrow	S_{1}	S_{2}	S_{3}
act \downarrow			
a	$\$ 144$	$\$ 176$	$\$ 384$
b	$\$ 148$	$\$ 341$	$\$ 158$
c	$\$ 264$	$\$ 152$	$\$ 164$

$\mathbb{E}[U(a)]=$
$\mathbb{E}[U(b)]=$
$\mathbb{E}[U(c)]=$

STEP 2. Calculate her expected utility if she purchases perfect information at price p.

- If I am told that the state is s_{1} then I will choose and get a utility of - If I am told that the state is s_{2} then I will choose and get a utility of - If I am told that the state is s_{3} then I will choose and get a utility of	probability state \rightarrow act \downarrow a b c	$\begin{gathered} \frac{1}{2} \\ s_{1} \\ \$ 144 \\ \$ 148 \\ \$ 264 \end{gathered}$	$\frac{1}{3}$ s_{2} $\$ 176$ $\$ 341$ $\$ 152$	$\frac{1}{6}$ s_{3} $\$ 384$ $\$ 158$ $\$ 164$

Expected utility if I purchase information is:

How much should one be prepared to pay for information?

CASE 2: monetary outcomes and IMPERFECT information

CASE 2.1: risk neutrality

The amounts are changes in her wealth.

probability	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 64$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

STEP 0. Change the probabilities so that they have the same denominator:

$$
\mathbb{E}[a]=
$$

$$
\mathbb{E}[b]=
$$

$\mathbb{E}[c]=$

Thus she will choose and expect
Suppose now that Ann is offered, at price p, the following imperfect information:

$$
\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\}\right\}
$$

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 0$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

- If informed that $\left\{s_{1}, s_{2}\right\}$ then
probability

state	\rightarrow	s_{1}	s_{2}
act \downarrow			
a		$\$ 16$	$\$ 36$
b		$\$ 10$	$\$ 0$
c		$\$ 104$	$\$ 12$

$\mathbb{E}[b]=$
$\mathbb{E}[c]=$

Thus she will choose and expect

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 0$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

probability

- If informed that $\left\{s_{3}, s_{4}\right\}$ then

state \rightarrow	s_{3}	s_{4}
act \downarrow		
a	$\$ 100$	$\$ 12$
b	$\$ 18$	$\$ 120$
c	$\$ 24$	$\$ 0$

$$
\mathbb{E}[a]=
$$

$\mathbb{E}[b]=$
$\mathbb{E}[c]=$

Thus she will choose and expect

probability	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
state \rightarrow	s_{1}	s_{2}	s_{3}	s_{4}
act \downarrow				
a	$\$ 16$	$\$ 36$	$\$ 100$	$\$ 12$
b	$\$ 10$	$\$ 0$	$\$ 18$	$\$ 120$
c	$\$ 104$	$\$ 12$	$\$ 24$	$\$ 0$

The probability of $\left\{s_{1}, s_{2}\right\}$ is and the probability of $\left\{s_{3}, s_{4}\right\}$ is

Thus the expected change in wealth with perfect information at price p is

Thus as long as
it is worth paying for the information.

CASE 2.2: risk aversion

Smaller example.

	probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
Changes in wealth:	state \rightarrow	s_{1}	s_{2}	s_{3}
	act \downarrow			
	a	$\$ 21$	$\$ 0$	$\$ 156$
	b	$\$ 0$	$\$ 125$	$\$ 0$
	c	$\$ 96$	$\$ 0$	$\$ 69$

Assume: $U(\$ x)=\sqrt{x}$ and initial wealth is $\$ 100$. Then

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 1. If she does not purchase information.
$\mathbb{E}[U(a)]=$
$\mathbb{E}[U(b)]=$
$\mathbb{E}[U(c)]=$

Thus she will choose
with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

STEP 2. If she purchases information $\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\}\right\}$ at price p.

- If informed that $\left\{s_{1}, s_{2}\right\}$ then the revised decision problem is:

probability		
state \rightarrow	s_{1}	s_{2}
act \downarrow		
a	$\$ 121$	$\$ 100$
b	$\$ 100$	$\$ 225$
c	$\$ 196$	$\$ 100$

$\mathbb{E}[U(a)]=$

$$
\mathbb{E}[U(b)]=
$$

$$
\mathbb{E}[U(c)]=
$$

Thus she will choose
with an expected utility of

probability	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{3}{9}$
state \rightarrow	s_{1}	s_{2}	s_{3}
act \downarrow			
a	$\$ 121$	$\$ 100$	$\$ 256$
b	$\$ 100$	$\$ 225$	$\$ 100$
c	$\$ 196$	$\$ 100$	$\$ 169$

- If informed that $\left\{s_{3}\right\}$ then she will choose with a utility of

$$
\text { probability } \quad \frac{2}{9} \quad \frac{4}{9} \quad \frac{3}{9}
$$

Given the initial probabilities: state $\rightarrow \begin{array}{lllll} & s_{1} & s_{2} & s_{3}\end{array}$ the probability of receiving information $\left\{s_{1}, s_{2}\right\}$ is $\frac{6}{9}=\frac{2}{3}$ and the probability of receiving information $\left\{s_{3}\right\}$ is $\frac{1}{3}$. Thus the expected utility of purchasing information at price p is:

For example, if $p=\$ 30$ then
The maximum price the DM is willing to pay for information is given by the solution to:

Which is

