HOMEWORK # 6 ANSWERS

(a) Let \(p \) be the probability of \(T \) and \(q \) the probability of \(L \). Then \(p \) and \(q \) are given by the solution to \(q = 2(1-q) \) and \(4(1-p) = 2p + 1 - p \), which is \(q = \frac{2}{3} \) and \(p = \frac{3}{5} \). Thus the mixed-strategy Nash equilibrium is \(\left(\frac{3}{5}, \frac{2}{5} \right) \).

(b) Let \(\begin{pmatrix} a \\ b \\ c \\ d \\ p \\ q \\ r \\ 1-p-q-r \end{pmatrix} \) be the common prior. Then it must satisfy the following equations:

\[
\frac{p}{p+1-p-q-r} = \frac{1}{3}, \quad \frac{q}{q+r} = \frac{1}{2}, \quad \frac{p}{p+q} = \frac{1}{2} \quad \text{and} \quad \frac{r}{r+1-p-q-r} = \frac{1}{3}.
\]

The solution is \(\begin{pmatrix} a \\ b \\ c \\ d \\ \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \\ \frac{2}{5} \end{pmatrix} \).

(c) The game is as follows:

(d) The question is about finding the payoffs of the players associated with the pure-strategy profile \((TT,RR) \). The expected payoff of Player 1 is \(3p + 0q + 0r + 3(1-p-q-r) \) [using the calculated common prior this is equal to \(3 \cdot \frac{1}{5} + 3 \cdot \frac{2}{5} = \frac{9}{5} = 1.8 \)] and the expected payoff of Player 2 is \(2p + 2q + 2r + 2(1-p-q-r) = 2 \).