1. (a) The prisoner is Dan; he claims – correctly – that his hat is yellow and he reasons as follows:

- if my (=Dan’s) hat were red, then Bill would see it and reason as follows
- I (= Ed) see that Dan’s hat is red and Frank also sees this; thus if my (=Ed’s) hat were red, then Frank would see two red hats and - using the Warden’s hint that at least one hat is yellow – would immediately claim to know the color of his hat; Ed’s silence thus tells me that my hat is yellow and I can thus claim to know that my hat is yellow.

Since both Ed and Frank say nothing (there is a long silence), Dan correctly concludes that his hat is yellow.

(b) Let \(ryr \) mean that Dan’s hat is red (the first \(r \)) and Ed’s hat is yellow and Frank’s hat is red. And similarly for the other possibilities. Then the partitions are as follows:

<table>
<thead>
<tr>
<th>DAN:</th>
<th>rry</th>
<th>ryr</th>
<th>ryy</th>
<th>yrr</th>
<th>yry</th>
<th>yyr</th>
<th>yyy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED:</td>
<td>rry</td>
<td>ryr</td>
<td>ryy</td>
<td>yrr</td>
<td>yry</td>
<td>yyr</td>
<td>yyy</td>
</tr>
<tr>
<td>FRANK:</td>
<td>rry</td>
<td>ryr</td>
<td>ryy</td>
<td>yrr</td>
<td>yry</td>
<td>yyr</td>
<td>yyy</td>
</tr>
</tbody>
</table>

(c) (c.1) \(A = \{ ryy, yry, yyr \} \). (c.2) \(K_D A = \emptyset \), \(K_E A = \emptyset \), \(K_F A = \emptyset \)

(d) \(B = \{ rry, yrr, ryr \} \). \(K_D B = K_E B = \emptyset \), \(K_F B = \{ rry \} \).

2. **Note: this question was taken from the First Midterm.** There are six Nash equilibria: (8,9), (8,10), (8,11), (8,12), (12,8) and (11,8).

3. (a) \(S_3 = \{ DS, DT, ES, ET, FS, FT \} \). (b) \(3 \times 2 = 6 \).

(c) At his singleton node on the right, Player 3 will choose \(S \). Given this, at her right node Player 2 will choose \(H \). Now consider the subgame that starts at Player 2’s left node. Its strategic form is as follows:
For Player 2, A is strictly dominated by B. After deleting A, F becomes strictly dominated by D for Player 3. Thus the iterative elimination of strictly dominated strategies leads to the following reduced game:

This game has no pure-strategy Nash equilibria. To find the mixed-strategy equilibrium, let p be the probability with which Player 1 plays B and q the probability with which Player 2 plays D. Then q must be the solution to $3q + (1 - q) = 4q$, which is $q = \frac{1}{4}$, and p must be the solution to $2p + 3(1 - p) = 6(1 - p)$, which is $p = \frac{3}{5}$. Hence the Nash equilibrium of the subgame is

$$
\begin{pmatrix}
 A & B & C & D & E & F \\
 0 & \frac{1}{5} & \frac{2}{5} & \frac{1}{2} & \frac{1}{2} & 0 \\
\end{pmatrix}.
$$

The expected payoff of Player 1 in the subgame is thus

$$
\left(\frac{3}{5} \times \frac{1}{5} \times 4\right) + \left(\frac{1}{5} \times \frac{1}{4} \times 4\right) + \left(\frac{2}{5} \times \frac{1}{4} \times 1\right) + \left(\frac{2}{5} \times \frac{1}{4} \times 1\right) = \frac{28}{10} = 2.8.
$$

Hence Player 1 is better off playing L rather than R. Thus there is only one subgame-perfect equilibrium, which is as follows: Player 1’s strategy: L, Player 2’s strategy:

$$
\begin{pmatrix}
 A & B & C \\
 0 & \frac{1}{5} & \frac{2}{5} \\
\end{pmatrix},
$$

Player 3’s strategy:

$$
\begin{pmatrix}
 D & E & F \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
\end{pmatrix}.
$$

4. (a) No, because if player 1 plays C the payoff of player 3 is the same (namely 8) no matter what strategy player 3 chooses.

(b) Yes (G,D) is weakly dominated by (F,D) and (G,E) is weakly dominated by (F,E).

(c) For $y \neq 2$ (and only those values of y): if $y < 2$ then H weakly dominates L and if $y > 2$ then L weakly dominates H.

(d) One solution is $(C, (F,E), L)$ and the other is $(A, (F,D), H)$.

(e) Because it is not a strategy profile.