Game Theory Professor Giacomo Bonanno

COOPERATIVE GAMES: the SHAPLEY VALUE

The description of a cooperative game is still in terms of a characteristic function which specifies for every group of players the total payoff that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function
game) is a pair $\langle N, v\rangle$ where $N=\{1, \ldots, n\}$ is the set of players and for every subset S of I
(called a coalition) $v(S) \in \mathbb{R}$ is the total payoff that is available for division among the members of S (called the worth of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

$$
\text { for all disjoint } S, T \subseteq N, \quad v(S \cup T) \geq v(S)+v(T)
$$

As before, an agreement is a list $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ where x_{i} is the proposed payoff to individual i. Shapley proposed some conditions (or axioms) that a solutions should satisfy and proved that there is a unique solution that meets those conditions. The solution, known as the Shapley value, has a nice interpretation in terms of expected marginal contribution. It is calculated by considering all the possible orders of arrival of the players into a room and giving each player his marginal contribution. The following examples illustrate this.

EXAMPLE 1. Suppose that there are two players and $v(\{1\})=10, v(\{2\})=12$ and $v(\{1,2\})=23$. There are two possible orders of arrival: (1) first 1 then 2 , and (2) first 2 then 1.

If 1 comes first and then 2,1 's contribution is $v(\{1\})=10$; when 2 arrives the surplus increases from 10 to $\mathrm{v}(\{1,2\})=23$ and therefore 2 's marginal contribution is $\mathrm{v}(\{1,2\})-\mathrm{v}(\{1\})=$ $23-10=13$.

If 2 comes first and then 1,2 's contribution is $v(\{2\})=12$; when 1 arrives the surplus increases from 12 to $\mathrm{v}(\{1,2\})=23$ and therefore 1 's marginal contribution is $\mathrm{v}(\{1,2\})-\mathrm{v}(\{2\})=$ $23-12=11$.

Thus we have the following table:

Probability	Order of arrival	1's marginal contribution	2's marginal contribution
$\frac{1}{2}$	first 1 then 2	10	13
$\frac{1}{2}$	first 2 then 1	11	12

Thus 1's expected marginal contribution is: $\frac{1}{2} 10+\frac{1}{2} 11=10.5$ and 2 's expected marginal contribution is $\frac{1}{2} 13+\frac{1}{2} 12=12.5$. This is the Shapley value: $x_{1}=10.5$ and $x_{2}=12.5$.

EXAMPLE 2. Suppose that there are three players now and $v(\{1\})=100, v(\{2\})=125$, $\mathrm{v}(\{3\})=50, \mathrm{v}(\{1,2\})=270, \mathrm{v}(\{1,3\})=375, \mathrm{v}(\{2,3\})=350$ and $\mathrm{v}(\{1,2,3\})=500$. Then we have the following table:
$\mathrm{v}(\{1\})=100, \mathrm{v}(\{2\})=125, \mathrm{v}(\{3\})=50, \mathrm{v}(\{1,2\})=270, \mathrm{v}(\{1,3\})=375, \mathrm{v}(\{2,3\})=350$ and $\mathrm{v}(\{1,2,3\})=500$

Probability	Order of arrival	1's marginal contribution	2's marginal contribution	3's marginal contribution
$\frac{1}{6}$	first 1 then 2 then 3 : 123	$v(\{1\})=100$	$\begin{gathered} \mathrm{v}(\{1,2\})-\mathrm{v}(\{1\})=270-100 \\ =170 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,2\})= \\ 500-270=230 \end{gathered}$
$\frac{1}{6}$	first 1 then 3 then 2 : 132	$v(\{1\})=100$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,3\})= \\ 500-375=125 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,3\})-\mathrm{v}(\{1\})=375-100 \\ =275 \end{gathered}$
$\frac{1}{6}$	first 2 then 1 then 3 : 213	$\begin{gathered} \mathrm{v}(\{1,2\})-\mathrm{v}(\{2\})=270 \\ -125=145 \end{gathered}$	$\mathrm{v}(\{2\})=125$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,2\})= \\ 500-270=230 \end{gathered}$
$\frac{1}{6}$	first 2 then 3 then 1 : 231	$\begin{gathered} v(\{1,2,3\})-v(\{2,3\})= \\ 500-350=150 \end{gathered}$	$\mathrm{v}(\{2\})=125$	$\begin{gathered} \mathrm{v}(\{2,3\})-\mathrm{v}(\{2\})=350-125 \\ =225 \end{gathered}$
$\frac{1}{6}$	first 3 then 1 then 2 : 312	$\begin{gathered} \mathrm{v}(\{1,3\})-\mathrm{v}(\{3\})=375 \\ -50=325 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,3\})= \\ 500-375=125 \end{gathered}$	$v(\{3\})=50$
$\frac{1}{6}$	first 3 then 2 then 1 : 321	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{2,3\})= \\ 500-350=150 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{2,3\})-\mathrm{v}(\{3\})=350-50= \\ 300 \end{gathered}$	$v(\{3\})=50$

Thus 1's expected marginal contribution is: $\frac{1}{6}(100+100+145+150+325+150)=\frac{970}{6}$
2's expected marginal contribution is $\frac{1}{6} 170+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 300=\frac{970}{6}$
3's expected marginal contribution is $\frac{1}{6} 230+\frac{1}{6} 275+\frac{1}{6} 230+\frac{1}{6} 225+\frac{1}{6} 50+\frac{1}{6} 50=\frac{1060}{6}$
The sum, of course, is $\frac{3000}{6}=500=v(\{1,2,3\})$

