Game Theory Professor Giacomo Bonanno

COOPERATIVE GAMES: the SHAPLEY VALUE

The description of a cooperative game is still in terms of a **characteristic function** which specifies for every group of players the total payoff that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function game) is a pair $\langle N, v \rangle$ where $N = \{1, ..., n\}$ is the set of players and for every subset S of I (called a *coalition*) $v(S) \in \mathbb{R}$ is the total payoff that is available for division among the members

of S (called the *worth* of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

for all disjoint S, T
$$\subseteq$$
 N, $v(S \cup T) \ge v(S) + v(T)$

As before, an agreement is a list $(x_1, x_2, ..., x_n)$ where x_i is the proposed payoff to individual i. Shapley proposed some conditions (or axioms) that a solutions should satisfy and proved that there is a unique solution that meets those conditions. The solution, known as the **Shapley value**, has a nice interpretation in terms of **expected marginal contribution**. It is calculated by considering all the possible orders of arrival of the players into a room and giving each player his marginal contribution. The following examples illustrate this. **EXAMPLE 1.** Suppose that there are two players and $v({1}) = 10$, $v({2}) = 12$ and $v({1,2}) = 23$. There are two possible orders of arrival: (1) first 1 then 2, and (2) first 2 then 1.

If 1 comes first and then 2, 1's contribution is $v({1}) = 10$; when 2 arrives the surplus increases from 10 to $v({1,2}) = 23$ and therefore 2's marginal contribution is $v({1,2}) - v({1}) = 23 - 10 = 13$.

If 2 comes first and then 1, 2's contribution is $v({2}) = 12$; when 1 arrives the surplus increases from 12 to $v({1,2}) = 23$ and therefore 1's marginal contribution is $v({1,2}) - v({2}) = 23 - 12 = 11$.

Thus we have the following table:

Probability	Order of arrival	1's marginal contribution	2's marginal contribution
$\frac{1}{2}$	first 1 then 2	10	13
$\frac{1}{2}$	first 2 then 1	11	12

Thus 1's expected marginal contribution is: $\frac{1}{2}10 + \frac{1}{2}11 = 10.5$ and 2's expected marginal contribution is $\frac{1}{2}13 + \frac{1}{2}12 = 12.5$. This is the Shapley value: $x_1 = 10.5$ and $x_2 = 12.5$.

EXAMPLE 2. Suppose that there are three players now and $v({1}) = 100$, $v({2}) = 125$, $v({3}) = 50$, $v({1,2}) = 270$, $v({1,3}) = 375$, $v({2,3}) = 350$ and $v({1,2,3}) = 500$. Then we have the following table:

 $v({1}) = 100, v({2}) = 125, v({3}) = 50, v({1,2}) = 270, v({1,3}) = 375, v({2,3}) = 350 \text{ and } v({1,2,3}) = 500$

Probability	Order of arrival	1's marginal contribution	2's marginal contribution	3's marginal contribution
$\frac{1}{6}$	first 1 then 2 then 3: 123	$v({1}) = 100$	$v(\{1,2\}) - v(\{1\}) = 270 - 100$ = 170	$v({1,2,3}) - v({1,2}) =$ 500 - 270 = 230
$\frac{1}{6}$	first 1 then 3 then 2: 132	$v({1}) = 100$	$v({1,2,3}) - v({1,3}) =$ 500 - 375 = 125	$v({1,3}) - v({1}) = 375 - 100$ = 275
$\frac{1}{6}$	first 2 then 1 then 3: 213	$v({1,2}) - v({2}) = 270$ -125 = 145	v({2})=125	$v(\{1,2,3\}) - v(\{1,2\}) =$ 500 - 270 = 230
$\frac{1}{6}$	first 2 then 3 then 1: 231	$v(\{1,2,3\}) - v(\{2,3\}) = 500 - 350 = 150$	v({2})=125	$v({2,3}) - v({2}) = 350 - 125$ = 225
$\frac{1}{6}$	first 3 then 1 then 2: 312	$v({1,3}) - v({3}) = 375$ -50 = 325	$v({1,2,3}) - v({1,3}) =$ 500 - 375 = 125	$v({3}) = 50$
$\frac{1}{6}$	first 3 then 2 then 1: 321	$v(\{1,2,3\}) - v(\{2,3\}) = 500 - 350 = 150$	$v({2,3}) - v({3}) = 350 - 50 =$ 300	$v({3}) = 50$

Thus 1's expected marginal contribution is: $\frac{1}{6}(100+100+145+150+325+150) = \frac{970}{6}$

2's expected marginal contribution is
$$\frac{1}{6}170 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}300 = \frac{970}{6}$$

3's expected marginal contribution is $\frac{1}{6}230 + \frac{1}{6}275 + \frac{1}{6}230 + \frac{1}{6}225 + \frac{1}{6}50 + \frac{1}{6}50 = \frac{1060}{6}$
3000

The sum, of course, is $\frac{3000}{6} = 500 = v(\{1,2,3\})$