1. (a) The game-frame is as follows:

(b) At a subgame-perfect equilibrium Player 1 chooses A at each of his second-stage nodes. Thus the game reduces to:
The strategic form associated with the reduced game is:

Using utility functions with values 0, 1, 2, we can write it as follows:

This game has 5 pure-strategy Nash equilibria: \((A,A,A)\), \((A,C,A)\), \((A,B,B)\), \((B,B,B)\) and \((C,C,C)\). Thus there are 5 subgame-perfect equilibria of the original game, obtained by appending to each first-round choice of Player 1 the choice of \(A\) at each of the six second-stage nodes.

2. (a) Let \(p\) be the probability that 002 uses strategy \(x\) (and \((1-p)\) the probability that he uses \(y\). Then, for 001, the expected payoffs from his pure strategies are: \(a(p) \rightarrow 12p\) \(b(p) \rightarrow 10p + 1\) \(c(p) \rightarrow 6p + 4\) \(d(p) \rightarrow 3p + 6\). The corresponding graphs are shown below:
Thus if \(p < \frac{2}{3} \) the best choice is d, if \(p = \frac{2}{3} \) the best choices are a, c and d, and if \(p > \frac{2}{3} \) then the best choice is a.

(a) Strategy b is never a best reply (for every value of \(p \) there is another pure strategy which is strictly better than b) and therefore should never be used.

(b) Based on the above, the following is a mixed-strategy Nash equilibrium: 001 chooses c (with probability 1) and 002 chooses x with probability \(\frac{2}{3} \) and y with probability \(\frac{1}{3} \):

\[
\begin{pmatrix}
0 & 0 & 1 & 0 \\
\frac{2}{3} & \frac{1}{3}
\end{pmatrix}.
\]

Since b must be given zero probability, to find an equilibrium where c is given zero probability, we must look for a mixture of a and d. Let q be the probability of a. Then for 002 x gives an expected payoff of \(3(1-q) \) and y an expected payoff of \(6q \). These two must be equal. Thus q must be \(\frac{1}{3} \). Then 002 is indifferent between any two mixed (or pure) strategies, in particular he will be happy to choose x with probability \(\frac{2}{3} \) and y with probability \(\frac{1}{3} \), in which case 001 is happy with any combination of a and d. Thus the following is a mixed-strategy equilibrium:

\[
\begin{pmatrix}
\frac{1}{3} & 0 & 0 & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{pmatrix}.
\]

There is no other Nash equilibrium where Player 1 mixes between only two strategies (if Player 1’s mixture is between a and c, then Player 2 wants to play y with probability 1 and if Player 1’s mixture is between c and d, then Player 2 wants to play x with probability 1). Thus the only other candidates for NE are the profiles of the form

\[
\begin{pmatrix}
a & b & c & d \\
p & 0 & q & 1-p-q
\end{pmatrix}
\]

with \(p > 0, q > 0 \) and \(p + q < 1 \). In order for Player 2 to be indifferent between x and y it must be that Player 1 assigns to d two times the probability that he assigns to a. Thus all of the following are Nash equilibria:

\[
\begin{pmatrix}
a & b & c & d \\
\frac{1}{3}(1-q) & 0 & q & \frac{2}{3}(1-q)
\end{pmatrix}
\]

for any \(0 < q < 1 \).