COOPERATIVE GAMES: the SHAPLEY VALUE

The description of a cooperative game is still in terms of a characteristic function which specifies for every group of players the total payoff that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function game) is a pair $\langle\mathrm{N}, v\rangle$ where $\mathrm{N}=\{1, \ldots, \mathrm{n}\}$ is the set of players and for every subset S of I (called a coalition) $v(S) \in \mathbb{R}$ is the total payoff that is available for division among the members of S (called the worth of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

$$
\text { for all disjoint } S, T \subseteq N, \quad v(S \cup T) \geq v(S)+v(T)
$$

As before, an agreement is a list $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ where x_{i} is the proposed payoff to individual i. Shapley proposed some conditions (or axioms) that a solutions should satisfy and proved that there is a unique solution that meets those conditions. The solution, known as the Shapley value, has a nice interpretation in terms of expected marginal contribution. It is calculated by considering all the possible orders of arrival of the players into a room and giving each player his marginal contribution. The following examples illustrate this.

EXAMPLE 1. Suppose that there are two players and $v(\{1\})=10, \mathrm{v}(\{2\})=12$ and $v(\{1,2\})=23$. There are two possible orders of arrival: (1) first 1 then 2 , and (2) first 2 then 1 .

If 1 comes first and then 2,1 's contribution is $v(\{1\})=10$; when 2 arrives the surplus increases from 10 to $\mathrm{v}(\{1,2\})=23$ and therefore 2 's marginal contribution is $\mathrm{v}(\{1,2\})-\mathrm{v}(\{1\})=$ $23-10=13$.

If 2 comes first and then 1,2 's contribution is $\mathrm{v}(\{2\})=12$; when 1 arrives the surplus increases from 12 to $\mathrm{v}(\{1,2\})=23$ and therefore 1 's marginal contribution is $\mathrm{v}(\{1,2\})-\mathrm{v}(\{2\})=$ $23-12=11$.

Thus we have the following table:

Probability	Order of arrival	1's marginal contribution	2's marginal contribution
$\frac{1}{2}$	first 1 then 2	10	13
$\frac{1}{2}$	first 2 then 1	11	12

Thus 1's expected marginal contribution is: $\frac{1}{2} 10+\frac{1}{2} 11=10.5$ and 2 's expected marginal contribution is $\frac{1}{2} 13+\frac{1}{2} 12=12.5$. This is the Shapley value: $x_{1}=10.5$ and $x_{2}=12.5$.

EXAMPLE 2. Suppose that there are three players now and $v(\{1\})=100, v(\{2\})=125$, $\mathrm{v}(\{3\})=50, \mathrm{v}(\{1,2\})=270, \mathrm{v}(\{1,3\})=375, \mathrm{v}(\{2,3\})=350$ and $\mathrm{v}(\{1,2,3\})=500$. Then we have the following table:
$\mathrm{v}(\{1\})=100, \mathrm{v}(\{2\})=125, \mathrm{v}(\{3\})=50, \mathrm{v}(\{1,2\})=270, \mathrm{v}(\{1,3\})=375, \mathrm{v}(\{2,3\})=350$ and $\mathrm{v}(\{1,2,3\})=500$

Probability	Order of arrival	1's marginal contribution	2's marginal contribution	3's marginal contribution
$\frac{1}{6}$	first 1 then 2 then 3 : 123	$v(\{1\})=100$	$\begin{gathered} \mathrm{v}(\{1,2\})-\mathrm{v}(\{1\})=270-100 \\ =170 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,2\})= \\ 500-270=230 \end{gathered}$
$\frac{1}{6}$	first 1 then 3 then 2 : 132	$v(\{1\})=100$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,3\})= \\ 500-375=125 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,3\})-\mathrm{v}(\{1\})=375-100 \\ =275 \end{gathered}$
$\frac{1}{6}$	first 2 then 1 then 3 : 213	$\begin{gathered} \mathrm{v}(\{1,2\})-\mathrm{v}(\{2\})=270 \\ -125=145 \end{gathered}$	$\mathrm{v}(\{2\})=125$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,2\})= \\ 500-270=230 \end{gathered}$
$\frac{1}{6}$	first 2 then 3 then 1 : 231	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{2,3\})= \\ 500-350=150 \end{gathered}$	$\mathrm{v}(\{2\})=125$	$\begin{gathered} \mathrm{v}(\{2,3\})-\mathrm{v}(\{2\})=350-125 \\ =225 \end{gathered}$
$\frac{1}{6}$	first 3 then 1 then 2 : 312	$\begin{gathered} \mathrm{v}(\{1,3\})-\mathrm{v}(\{3\})=375 \\ -50=325 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{1,3\})= \\ 500-375=125 \end{gathered}$	$\mathrm{v}(\{3\})=50$
$\frac{1}{6}$	first 3 then 2 then 1 : 321	$\begin{gathered} \mathrm{v}(\{1,2,3\})-\mathrm{v}(\{2,3\})= \\ 500-350=150 \end{gathered}$	$\begin{gathered} \mathrm{v}(\{2,3\})-\mathrm{v}(\{3\})=350-50= \\ 300 \end{gathered}$	$\mathrm{v}(\{3\})=50$

Thus 1's expected marginal contribution is: $\frac{1}{6}(100+100+145+150+325+150)=\frac{970}{6}$
2's expected marginal contribution is $\frac{1}{6} 170+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 125+\frac{1}{6} 300=\frac{970}{6}$
3 's expected marginal contribution is $\frac{1}{6} 230+\frac{1}{6} 275+\frac{1}{6} 230+\frac{1}{6} 225+\frac{1}{6} 50+\frac{1}{6} 50=\frac{1060}{6}$
The sum, of course, is $\frac{3000}{6}=500=v(\{1,2,3\})$

COOPERATIVE GAMES: the CORE

So far we have looked at non-cooperative games, characterized by the fact that the individuals involved cannot sign binding agreements and therefore any suggested outcome has to be self-enforcing (i.e. a Nash equilibrium) for the players to be willing to go along with it. We now turn to cooperative games, where binding agreements are possible. The central question then becomes: what agreement would the individuals involved be willing to subscribe to?

The description of a cooperative game is in terms of a characteristic function which specifies for every group of players (i.e. every group of individuals who might enter into a binding agreement) the total payoff (e.g. money) that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function game) is a pair $\langle\mathrm{N}, v\rangle$ where $\mathrm{N}=\{1, \ldots$, n \} is the set of players and for every subset S of N (called a coalition) $v(\mathrm{~S}) \in \mathbb{R}$ is the total payoff that is available for division among the members of S (called the worth of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

$$
\text { for all disjoint } S, T \subseteq N, \quad v(S \cup T) \geq v(S)+v(T)
$$

What kind of agreement do we expect individuals to get to? An agreement can be thought of as a list $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ where x_{i} is the proposed payoff to individual i. Let us try to determine the set of acceptable agreements by eliminating those that are unacceptable. First of all, an agreement $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ must be feasible, i.e. it cannot be such that $x_{1}+x_{2}+\ldots+x_{n}>v(N)$. Thus,

first necessary condition for acceptability:	$x_{1}+x_{2}+\ldots+v_{n} \leq v(N) \quad$ (feasibility condition).

Secondly, an agreement $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ would be unacceptable to individual if $\mathrm{x}_{\mathrm{i}}<\mathrm{v}(\{i\})$, because if such an agreement were proposed, individual i would do better by refusing to be part of the agreement and acting by herself [thus guaranteeing herself a payoff of $\mathrm{v}(\{i\})]$. Thus

```
second necessary condition }\quad\mp@subsup{\textrm{x}}{\textrm{i}}{}\geq\textrm{v}({i})\mathrm{ for all i (individual rationality condition).
```

for acceptability:

Thirdly, an agreement $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ would also be unacceptable if $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}<\mathrm{v}(\mathrm{N})$, because it would require some potential surplus to be wasted.. Thus

| third necessary condition
 for acceptability: | $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}} \geq \mathrm{v}(\mathrm{N})$ |
| :--- | :--- | (Pareto optimality).

Note that the first and third condition together require $x_{1}+x_{2}+\ldots+x_{n}=v(N)$.
EXAMPLE. Consider the following game: $\mathrm{N}=\{1,2,3\}$ and

$$
\begin{aligned}
& \mathrm{v}(\{1\})=100 \\
& \mathrm{v}(\{2\})=125 \\
& \mathrm{v}(\{3\})=50 \\
& \mathrm{v}(\{1,2\})=270 \\
& \mathrm{v}(\{1,3\})=375 \\
& \mathrm{v}(\{2,3\})=350 \\
& \mathrm{v}(\{1,2,3\})=500
\end{aligned}
$$

Then the following agreement satisfies the three necessary conditions listed above:
$x_{1}=120, x_{2}=250, x_{3}=130$. Is such an agreement likely to be accepted, if proposed to the three individuals? The answer is No, because individuals 1 and 3 would be better off if they walked out of the negotiations and acted independently of individual 2: 1 and 3 together (and without individual 2) can get 375 and they could split this sum in such a way that they are both better off than in the proposed agreement, e.g. 1 gets 180 and 3 gets 195. Thus we need to add further restrictions.

DEFINITION. A proposed agreement $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is blocked by coalition S if there exists a vector $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ such that:
(1) $y_{i}>x_{i} \quad$ for all $i \in S$, (each member of S is better off under the alternative y)
(2) $\sum_{i \in S} y_{i} \leq v(S) \quad$ (alternative y is feasible for the coalition S .

Thus the coalition S blocks agreement $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if the members of S can withdraw from the negotiations with the rest of the players and achieve among themselves a better allocation of payoffs. Thus,

fourth necessary condition for acceptability:	there is no coalition that blocks the proposed agreement.

DEFINITION. The core is the set of proposed agreements that satisfy the above four conditions.
How do we find the core? The following theorem gives us the answer.

THEOREM. A feasible agreement $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is in the core if and only if

$$
\sum_{i \in S} x_{i} \geq v(S) \quad \text { for all } \mathrm{S} \subseteq \mathrm{~N} \quad(\mathrm{~S} \neq \varnothing)
$$

For the intellectually ambitious here is a simple-to-understand proof.
Proof. Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a feasible allocation that satisfies the above property. Then taking $\mathrm{S}=\{\mathrm{i}\}$ we get individual rationality and taking $\mathrm{S}=\mathrm{N}$ we get Pareto optimality. On the other hand, if there were a coalition S that could block $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ with $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ then we would have that $\mathrm{y}_{\mathrm{i}}>\mathrm{x}_{\mathrm{i}}$ for all $\mathrm{i} \in \mathrm{S}$ and $\sum_{i \in S} y_{i} \leq v(S)$. But $\mathrm{y}_{\mathrm{i}}>\mathrm{x}_{\mathrm{i}}$ for all $\mathrm{i} \in \mathrm{S}$ implies that $\sum_{i \in S} y_{i}>\sum_{i \in S} x_{i}$. By hypothesis $\sum_{i \in S} x_{i} \geq v(S)$. Thus $\sum_{i \in S} y_{i}>v(S)$ yielding a contradiction.

Conversely, let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be an allocation in the core. We want to show that it must satisfy the property that $\sum_{i \in S} x_{i} \geq v(S)$ for all $\mathrm{S} \subseteq \mathrm{N}(\mathrm{S} \neq \varnothing)$. Suppose not. Then there exists an $\mathrm{S} \subseteq \mathrm{N}$ such that $\sum_{i \in S} x_{i}<v(S)$. Let $a=v(S)-\sum_{i \in S} x_{i}>0$ and consider the following allocation $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$:

$$
y_{i}=\left\{\begin{array}{ll}
x_{i}+\frac{a}{|S|} & \text { if } i \in S \\
y_{i}=v(\{i\}) & \text { if } i \notin S
\end{array} \quad \text { (where }|\mathrm{S}| \text { denotes the number of elements in } \mathrm{S}\right. \text {) }
$$

Then $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ is feasible (by the superadditivity condition) and S blocks $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ with $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$, since $\mathrm{y}_{\mathrm{i}}>\mathrm{x}_{\mathrm{i}}$ for all $\mathrm{i} \in \mathrm{S}$ and $\sum_{i \in S} y_{i}=v(S)$. Thus ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) cannot be in the core, yielding a contradiction.

EXAMPLE. In the above example, by the theorem the core consists of all the triples $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ such that:

$\mathrm{x}_{1} \geq \mathrm{v}(\{1\})=100$	(1)
$\mathrm{x}_{2} \geq \mathrm{v}(\{2\})=125$	(2)
$\mathrm{x}_{3} \geq \mathrm{v}(\{3\})=50$	(3)
$\mathrm{x}_{1}+\mathrm{x}_{2} \geq \mathrm{v}(\{1,2\})=270$	(4)
$\mathrm{x}_{1}+\mathrm{x}_{3} \geq \mathrm{v}(\{1,3\})=375$	(5)
$\mathrm{x}_{2}+\mathrm{x}_{3} \geq \mathrm{v}(\{2,3\})=350$	(6)
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=\mathrm{v}(\{1,2,3\})=500$	(7)

From (5) and (7) we get that $x_{2} \leq 125$. This, together with (2), gives

$$
\begin{equation*}
\mathrm{x}_{2}=125 . \tag{8}
\end{equation*}
$$

From (7) and (8) we get that $\mathrm{x}_{1}+\mathrm{x}_{3}=375$ so that

$$
\begin{equation*}
\mathrm{x}_{1}=375-\mathrm{x}_{3} . \tag{9}
\end{equation*}
$$

From (4) and (8) we get that

$$
x_{1} \geq 270-125=145
$$

From (9) and (10) we get that $375-x_{3} \geq 145$ i.e. $x_{3} \leq 230$.
From (6) and (8) we get that

$$
x_{3} \geq 225 \text {. }
$$

Thus the core is the set of triples $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ such that $\mathrm{x}_{1}=375-\mathrm{x}_{3}, \mathrm{x}_{2}=125$ and $225 \leq \mathrm{x}_{3} \leq 230$.

