
Page 1 of 6 

         Game Theory  Professor Giacomo Bonanno 

COOPERATIVE GAMES: the SHAPLEY VALUE 
The description of a cooperative game is still in terms of a characteristic function 

which specifies for every group of players the total payoff that the members of S can obtain by 
signing an agreement among themselves; this payoff is available for distribution among the 
members of the group.  

DEFINITION.  A coalitional game with transferable payoff (or characteristic function 

game) is a pair N,  where N = {1, ..., n} is the set of players and for every subset S of  I 

(called a coalition) (S) is the total payoff that is available for division among the members 
of S (called the worth of S).  We assume that the larger the coalition the higher the payoff (this 
property is called superadditivity): 

for all disjoint S, T  N,             v(S  T)  v(S) + v(T) 

As before, an agreement is a list (x
1
, x

2
, …, x

n
) where x

i
 is the proposed payoff to 

individual i. Shapley proposed some conditions (or axioms) that a solutions should satisfy and 
proved that there is a unique solution that meets those conditions. The solution, known as the 
Shapley value, has a nice interpretation in terms of expected marginal contribution. It is 
calculated by considering all the possible orders of arrival of the players into a room and giving 
each player his marginal contribution. The following examples illustrate this. 

EXAMPLE 1. Suppose that there are two players and v({1}) = 10, v({2}) =12 and 
v({1,2}) = 23. There are two possible orders of arrival: (1) first 1 then 2, and (2) first 2 then 1.  

If 1 comes first and then 2, 1’s contribution is v({1}) = 10; when 2 arrives the surplus 
increases from 10 to v({1,2}) = 23 and therefore 2’s marginal contribution is v({1,2})   v({1}) = 
23   10 = 13. 

If 2 comes first and then 1, 2’s contribution is v({2}) = 12; when 1 arrives the surplus 
increases from 12 to v({1,2}) = 23 and therefore 1’s marginal contribution is v({1,2})   v({2}) = 
23   12 = 11. 

Thus we have the following table: 

Probability Order of arrival 1’s marginal contribution 2’s marginal contribution 

1
2

 first 1 then 2 10 13 

1
2

 first 2 then 1 11 12 

Thus 1’s expected marginal contribution is: 1
2

10 + 1
2

 11 = 10.5 and 2’s expected 

marginal contribution is 1
2

13 + 1
2

 12 = 12.5. This is the Shapley value: x
1
 = 10.5 and x

2
 = 12.5. 

 

EXAMPLE 2. Suppose that there are three players now and v({1}) = 100,  v({2}) =125,  
v({3}) = 50,  v({1,2}) = 270,  v({1,3}) = 375,  v({2,3}) = 350 and v({1,2,3}) = 500. Then we 
have the following table: 
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v({1}) = 100,  v({2}) =125,  v({3}) = 50,  v({1,2}) = 270,  v({1,3}) = 375,  v({2,3}) = 350 and v({1,2,3}) = 500 

Probability Order of arrival 1’s marginal contribution 2’s marginal contribution 3’s marginal contribution 

1

6
 

first 1 then 2 then 3: 

123 

v({1}) = 100 v({1,2})   v({1}) = 270 100 
= 170 

v({1,2,3})   v({1,2}) =  
500 270 = 230 

1

6
 

first 1 then 3 then 2: 

132 

v({1}) = 100 v({1,2,3})   v({1,3}) =  
500 375 = 125 

v({1,3})   v({1}) = 375 100 
= 275 

1

6
 

first 2 then 1 then 3: 

213 

v({1,2})   v({2}) = 270 
125 = 145 

v({2}) =125 v({1,2,3})   v({1,2}) =  
500 270 = 230 

1

6
 

first 2 then 3 then 1: 

231 

v({1,2,3})   v({2,3}) =  
500 350 = 150 

v({2}) =125 v({2,3})   v({2}) = 350 125 
= 225 

1

6
 

first 3 then 1 then 2: 

312 

v({1,3})   v({3}) = 375 
50 = 325 

v({1,2,3})   v({1,3}) =  
500 375 = 125 

v({3}) = 50 

1

6
 

first 3 then 2 then 1: 

321 

v({1,2,3})   v({2,3}) =  
500 350 = 150 

v({2,3})   v({3}) = 350 50 = 
300 

v({3}) = 50 

Thus 1’s expected marginal contribution is:  
1 970

100 100 145 150 325 150
6 6

       

2’s expected marginal contribution is  
1

6
170

1

6
125

1

6
125

1

6
125

1

6
125

1

6
300

970

6
       

3’s expected marginal contribution is  
1

6
230

1

6
275

1

6
230

1

6
225

1

6
50

1

6
50

1060

6
       

The sum, of course, is 
3000

6
500 1 2 3  v({ , , })  
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COOPERATIVE GAMES: the CORE 
So far we have looked at non-cooperative games, characterized by the fact that the individuals involved cannot sign binding 

agreements and therefore any suggested outcome has to be self-enforcing (i.e. a Nash equilibrium) for the players to be willing to go 
along with it.  We now turn to cooperative games, where binding agreements are possible. The central question then becomes: what 
agreement would the individuals involved be willing to subscribe to?  

The description of a cooperative game is in terms of a characteristic function which specifies for every group of players (i.e. 
every group of individuals who might enter into a binding agreement) the total payoff (e.g. money) that the members of S can obtain by 
signing an agreement among themselves; this payoff is available for distribution among the members of the group.  

DEFINITION.  A coalitional game with transferable payoff (or characteristic function game) is a pair N,  where N = {1, ..., 

n} is the set of players and for every subset S of  N (called a coalition) (S) is the total payoff that is available for division among the 
members of S (called the worth of S).  We assume that the larger the coalition the higher the payoff (this property is called 
superadditivity): 

for all disjoint S, T  N,             v(S  T)  v(S) + v(T) 

What kind of agreement do we expect individuals to get to? An agreement can be thought of as a list (x
1
, x

2
, …, x

n
) where x

i
 is the 

proposed payoff to individual i. Let us try to determine the set of acceptable agreements by eliminating those that are unacceptable. 
First of all, an agreement (x

1
, x

2
, …, x

n
) must be feasible, i.e. it cannot be such that x

1
 + x

2
 + … + x

n
 > v(N) . Thus, 

first necessary condition 
for acceptability: 

     x
1
 + x

2
 + … + v

n
  v(N)    (feasibility condition). 

Secondly, an agreement (x
1
, x

2
, …, x

n
) would be unacceptable to individual i if  x

i
 < v({i}), because if such an agreement were 

proposed, individual i would do better by refusing to be part of the agreement and acting by herself [thus guaranteeing herself a payoff of 
v({i})]. Thus 

second necessary condition 
for acceptability: 

     x
i
  v({i})  for all i  (individual rationality condition). 

Thirdly, an agreement (x
1
, x

2
, …, x

n
) would also be unacceptable if  x

1
 + x

2
 + … + x

n
 < v(N), because it would require some 

potential surplus to be wasted.. Thus 

third necessary condition 
for acceptability: 

             x
1
 + x

2
 + … + x

n
  v(N)         (Pareto optimality). 
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Note that the first and third condition together require  x
1
 + x

2
 + … + x

n
 = v(N).  

EXAMPLE. Consider the following game: N = {1,2,3} and 

v({1}) = 100 

v({2}) =125 

v({3}) = 50 

v({1,2}) = 270 

v({1,3}) = 375 

v({2,3}) = 350 

v({1,2,3}) = 500 

Then the following agreement satisfies the three necessary conditions listed above:  
x

1
 = 120, x

2
 = 250, x

3
 = 130. Is such an agreement likely to be accepted, if proposed to the three individuals? The answer is No, because 

individuals 1 and 3 would be better off if they walked out of the negotiations and acted independently of individual 2: 1 and 3 together 
(and without individual 2) can get 375 and they could split this sum in such a way that they are both better off than in the proposed 
agreement, e.g. 1 gets 180 and 3 gets 195.  Thus we need to add further restrictions. 

DEFINITION. A proposed agreement (x
1
, x

2
, … , x

n
) is blocked by coalition S if there exists a vector (y

1
, y

2
, …, y

n
) such that: 

(1) y
i
 > x

i
     for all i  S,  (each member of S is better off under the alternative y) 

(2) y v Si
i S




 ( )   (alternative y is feasible for the coalition S. 

Thus the coalition S blocks agreement (x
1
, x

2
, … , x

n
)  if the members of S can withdraw from the negotiations with the rest of the 

players and achieve among themselves a better allocation of payoffs. Thus, 

fourth necessary condition 
for acceptability: 

     there is no coalition that blocks the proposed agreement. 

 

DEFINITION. The core is the set of proposed agreements that satisfy the above four conditions. 

How do we find the core? The following theorem gives us the answer. 
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THEOREM.  A feasible agreement (x
1
, x

2
, … , x

n
)  is in the core if and only if  

x v Si
i S

  ( )    for all S  N   (S  ) 

For the intellectually ambitious here is a simple-to-understand proof. 

Proof. Let (x
1
, x

2
, … , x

n
)  be a feasible allocation that satisfies the above property. Then taking S = {i} we get individual 

rationality and taking S = N we get Pareto optimality. On the other hand, if there were a coalition S that could block (x
1
, x

2
, … , x

n
)  with 

(y
1
, y

2
, … , y

n
)  then we would have that y

i
 > x

i
 for all i  S and y v Si

i S




 ( ) . But y
i
 > x

i
 for all i  S  implies that y xi i

i Si S




 . By 

hypothesis x v Si
i S

  ( ) . Thus y v Si
i S




 ( )  yielding a contradiction. 

Conversely, let (x
1
, x

2
, … , x

n
)  be an allocation in the core. We want to show that it must satisfy the property that x v Si

i S

  ( )    

for all S  N (S  ). Suppose not. Then there exists an  

S  N such that x v Si
i S

  ( ) . Let  a = v S xi
i S

( ) 


 > 0 and consider the following allocation  

(y
1
, …, y

n
): 

y
x

a

S
i S

y v i i S
i

i

i


 

 

R
S|
T|

| |

({ })

        if  

   if  

     (where |S| denotes the number of elements in S) 

Then (y
1
, …, y

n
) is feasible (by the superadditivity condition) and S blocks (x

1
, x

2
, … , x

n
)  with (y

1
, …, y

n
), since y

i
 > x

i
 for all i  S and 

y v Si
i S

  ( ) . Thus (x
1
, x

2
, … , x

n
)  cannot be in the core, yielding a contradiction.  



Page 6 of 6 

EXAMPLE. In the above example, by the theorem the core consists of all the triples (x
1
,x

2
,x

3
) such that: 

 

x
1
    v({1}) = 100 (1) 

x
2 

   v({2}) =125 (2) 

x
3
    v({3}) = 50 (3) 

x
1
 + x

2
    v({1,2}) = 270 (4) 

x
1
 + x

3
    v({1,3}) = 375 (5) 

x
2
 + x

3
    v({2,3}) = 350 (6) 

x
1
 + x

2
 + x

3
  =  v({1,2,3}) = 500 (7) 

From (5) and (7) we get that x
2
  125. This, together with (2), gives  

x
2
 = 125.      (8) 

From (7) and (8) we get that x
1
 + x

3
  = 375 so that  

x
1
 = 375 x

3
.     (9) 

From (4) and (8) we get that  

x
1
  270 125 = 145.   (10) 

From (9) and (10) we get that 375 x
3
  145  i.e. x

3
  230. 

From (6) and (8) we get that  

x
3
  225.    (10) 

Thus the core is the set of triples (x
1
, x

2
, x

3
) such that  x

1
 = 375 x

3
,  x

2 
= 125 and  

225  x
3
  230. 


