Game Theory Professor Giacomo Bonanno

COOPERATIVE GAMES: the SHAPLEY VALUE

The description of a cooperative game is still in terms of a **characteristic function** which specifies for every group of players the total payoff that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function

game) is a pair $\langle N, v \rangle$ where $N = \{1, ..., n\}$ is the set of players and for every subset S of I (called a *coalition*) $v(S) \in \mathbb{R}$ is the total payoff that is available for division among the members of S (called the *worth* of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

for all disjoint S, $T \subseteq N$, $v(S \cup T) \ge v(S) + v(T)$

As before, an agreement is a list $(x_1, x_2, ..., x_n)$ where x_i is the proposed payoff to individual i. Shapley proposed some conditions (or axioms) that a solutions should satisfy and proved that there is a unique solution that meets those conditions. The solution, known as the **Shapley value**, has a nice interpretation in terms of **expected marginal contribution**. It is calculated by considering all the possible orders of arrival of the players into a room and giving each player his marginal contribution. The following examples illustrate this.

EXAMPLE 1. Suppose that there are two players and $v({1}) = 10$, $v({2}) = 12$ and $v({1,2}) = 23$. There are two possible orders of arrival: (1) first 1 then 2, and (2) first 2 then 1.

If 1 comes first and then 2, 1's contribution is $v({1}) = 10$; when 2 arrives the surplus increases from 10 to $v({1,2}) = 23$ and therefore 2's marginal contribution is $v({1,2}) - v({1}) = 23 - 10 = 13$.

If 2 comes first and then 1, 2's contribution is $v(\{2\}) = 12$; when 1 arrives the surplus increases from 12 to $v(\{1,2\}) = 23$ and therefore 1's marginal contribution is $v(\{1,2\}) - v(\{2\}) = 23 - 12 = 11$.

Probability	Order of arrival	1's marginal contribution	2's marginal contribution
$\frac{1}{2}$	first 1 then 2	10	13
$\frac{1}{2}$	first 2 then 1	11	12

Thus we have the following table:

Thus 1's expected marginal contribution is: $\frac{1}{2}10 + \frac{1}{2}11 = 10.5$ and 2's expected marginal contribution is $\frac{1}{2}13 + \frac{1}{2}12 = 12.5$. This is the Shapley value: $x_1 = 10.5$ and $x_2 = 12.5$.

EXAMPLE 2. Suppose that there are three players now and $v({1}) = 100$, $v({2}) = 125$, $v({3}) = 50$, $v({1,2}) = 270$, $v({1,3}) = 375$, $v({2,3}) = 350$ and $v({1,2,3}) = 500$. Then we have the following table:

Probability	Order of arrival	1's marginal contribution	2's marginal contribution	3's marginal contribution
$\frac{1}{6}$	first 1 then 2 then 3: 123	$v({1}) = 100$	$v(\{1,2\}) - v(\{1\}) = 270 - 100$ = 170	$v({1,2,3}) - v({1,2}) =$ 500 - 270 = 230
$\frac{1}{6}$	first 1 then 3 then 2: 132	$v({1}) = 100$	$v({1,2,3}) - v({1,3}) =$ 500 - 375 = 125	$v({1,3}) - v({1}) = 375 - 100$ = 275
$\frac{1}{6}$	first 2 then 1 then 3: 213	$v({1,2}) - v({2}) = 270$ -125 = 145	v({2})=125	$v({1,2,3}) - v({1,2}) =$ 500 - 270 = 230
$\frac{1}{6}$	first 2 then 3 then 1: 231	$v(\{1,2,3\}) - v(\{2,3\}) = 500 - 350 = 150$	v({2})=125	$v({2,3}) - v({2}) = 350 - 125$ = 225
$\frac{1}{6}$	first 3 then 1 then 2: 312	$v({1,3}) - v({3}) = 375$ -50 = 325	$v({1,2,3}) - v({1,3}) =$ 500 - 375 = 125	$v({3}) = 50$
$\frac{1}{6}$	first 3 then 2 then 1: 321	$v(\{1,2,3\}) - v(\{2,3\}) =$ 500 - 350 = 150	$v({2,3}) - v({3}) = 350 - 50 = 300$	$v({3}) = 50$

 $v({1}) = 100, v({2}) = 125, v({3}) = 50, v({1,2}) = 270, v({1,3}) = 375, v({2,3}) = 350 \text{ and } v({1,2,3}) = 500$

Thus 1's expected marginal contribution is: $\frac{1}{6}(100+100+145+150+325+150) = \frac{970}{6}$

2's expected marginal contribution is $\frac{1}{6}170 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}300 = \frac{970}{6}$

3's expected marginal contribution is $\frac{1}{6}230 + \frac{1}{6}275 + \frac{1}{6}230 + \frac{1}{6}225 + \frac{1}{6}50 + \frac{1}{6}50 = \frac{1060}{6}$

The sum, of course, is $\frac{3000}{6} = 500 = v(\{1,2,3\})$

COOPERATIVE GAMES: the CORE

So far we have looked at non-cooperative games, characterized by the fact that the individuals involved cannot sign binding agreements and therefore any suggested outcome has to be self-enforcing (i.e. a Nash equilibrium) for the players to be willing to go along with it. We now turn to **cooperative** games, where **binding agreements** are possible. The central question then becomes: *what agreement would the individuals involved be willing to subscribe to*?

The description of a cooperative game is in terms of a **characteristic function** which specifies for every group of players (i.e. every group of individuals who might enter into a binding agreement) the total payoff (e.g. money) that the members of S can obtain by signing an agreement among themselves; this payoff is available for distribution among the members of the group.

DEFINITION. A coalitional game with transferable payoff (or characteristic function game) is a pair $\langle N, v \rangle$ where $N = \{1, ..., N\}$

n} is the set of players and for every subset S of N (called a *coalition*) $v(S) \in \mathbb{R}$ is the total payoff that is available for division among the members of S (called the *worth* of S). We assume that the larger the coalition the higher the payoff (this property is called superadditivity):

for all disjoint S,
$$T \subseteq N$$
, $v(S \cup T) \ge v(S) + v(T)$

What kind of agreement do we expect individuals to get to? An agreement can be thought of as a list $(x_1, x_2, ..., x_n)$ where x_i is the proposed payoff to individual i. Let us try to determine the set of **acceptable agreements** by eliminating those that are unacceptable. First of all, an agreement $(x_1, x_2, ..., x_n)$ must be feasible, i.e. it cannot be such that $x_1 + x_2 + ... + x_n > v(N)$. Thus,

first necessary condition $x_1 + for acceptability:$	$x_2 + \ldots + v_n \le v(N)$ (feasibility of	condition).
--	---	-------------

Secondly, an agreement $(x_1, x_2, ..., x_n)$ would be unacceptable to individual i if $x_i < v(\{i\})$, because if such an agreement were proposed, individual i would do better by refusing to be part of the agreement and acting by herself [thus guaranteeing herself a payoff of $v(\{i\})$]. Thus

second necessary condition for acceptability:	$x_i \ge v(\{i\})$ for all i (individual rationality condition).

Thirdly, an agreement $(x_1, x_2, ..., x_n)$ would also be unacceptable if $x_1 + x_2 + ... + x_n < v(N)$, because it would require some potential surplus to be wasted. Thus

third necessary condition	$\mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_n \ge \mathbf{v}(\mathbf{N})$	(Pareto optimality).
for acceptability:		

Note that the first and third condition together require $x_1 + x_2 + ... + x_n = v(N)$.

EXAMPLE. Consider the following game: $N = \{1,2,3\}$ and

 $v({1}) = 100$ $v({2}) = 125$ $v({3}) = 50$ $v({1,2}) = 270$ $v({1,3}) = 375$ $v({2,3}) = 350$ $v({1,2,3}) = 500$

Then the following agreement satisfies the three necessary conditions listed above:

 $x_1 = 120$, $x_2 = 250$, $x_3 = 130$. Is such an agreement likely to be accepted, if proposed to the three individuals? The answer is No, because individuals 1 and 3 would be better off if they walked out of the negotiations and acted independently of individual 2: 1 and 3 together (and without individual 2) can get 375 and they could split this sum in such a way that they are both better off than in the proposed agreement, e.g. 1 gets 180 and 3 gets 195. Thus we need to add further restrictions.

DEFINITION. A proposed agreement $(x_1, x_2, ..., x_n)$ is *blocked by coalition S* if there exists a vector $(y_1, y_2, ..., y_n)$ such that:

- (1) $y_i > x_i$ for all $i \in S$, (each member of S is better off under the alternative y)
- (2) $\sum_{i \in S} y_i \le v(S)$ (alternative y is feasible for the coalition S.

Thus the coalition S blocks agreement $(x_1, x_2, ..., x_n)$ if the members of S can withdraw from the negotiations with the rest of the players and achieve among themselves a better allocation of payoffs. Thus,

fourth necessary condition	there is no coalition that blocks the proposed agreement.
for acceptability:	

DEFINITION. The **core** is the set of proposed agreements that satisfy the above four conditions.

How do we find the core? The following theorem gives us the answer.

THEOREM. A feasible agreement $(x_1, x_2, ..., x_n)$ is in the core if and only if

$$\sum_{i \in S} x_i \ge v(S) \quad \text{for all } S \subseteq \mathbb{N} \quad (S \neq \emptyset)$$

For the intellectually ambitious here is a simple-to-understand proof.

Proof. Let $(x_1, x_2, ..., x_n)$ be a feasible allocation that satisfies the above property. Then taking $S = \{i\}$ we get individual rationality and taking S = N we get Pareto optimality. On the other hand, if there were a coalition S that could block $(x_1, x_2, ..., x_n)$ with $(y_1, y_2, ..., y_n)$ then we would have that $y_i > x_i$ for all $i \in S$ and $\sum_{i \in S} y_i \le v(S)$. But $y_i > x_i$ for all $i \in S$ implies that $\sum_{i \in S} y_i > \sum_{i \in S} x_i$. By hypothesis $\sum_{i \in S} x_i \ge v(S)$. Thus $\sum_{i \in S} y_i > v(S)$ yielding a contradiction.

Conversely, let $(x_1, x_2, ..., x_n)$ be an allocation in the core. We want to show that it must satisfy the property that $\sum_{i \in S} x_i \ge v(S)$ for all $S \subseteq N$ ($S \ne \emptyset$). Suppose not. Then there exists an $S \subseteq N$ such that $\sum_{i \in S} x_i < v(S)$. Let $a = v(S) - \sum_{i \in S} x_i > 0$ and consider the following allocation

(y₁, ..., y_n):

$$y_i = \begin{cases} x_i + \frac{a}{|S|} & \text{if } i \in S \\ y_i = v(\{i\}) & \text{if } i \notin S \end{cases}$$
 (where |S| denotes the number of elements in S)

Then $(y_1, ..., y_n)$ is feasible (by the superadditivity condition) and S blocks $(x_1, x_2, ..., x_n)$ with $(y_1, ..., y_n)$, since $y_i > x_i$ for all $i \in S$ and $\sum_{i \in S} y_i = v(S)$. Thus $(x_1, x_2, ..., x_n)$ cannot be in the core, yielding a contradiction.

EXAMPLE. In the above example	, by the theorem the core co	onsists of all the triples	(x_1, x_2, x_3) such that:

$x_1 \ge v(\{1\}) = 100$	(1)
$x_2 \ge v(\{2\}) = 125$	(2)
$x_3 \ge v({3}) = 50$	(3)
$x_1 + x_2 \ge v(\{1,2\}) = 270$	(4)
$x_1 + x_3 \ge v(\{1,3\}) = 375$	(5)
$x_2 + x_3 \ge v(\{2,3\}) = 350$	(6)
$x_1 + x_2 + x_3 = v(\{1,2,3\}) = 500$	(7)

From (5) and (7) we get that $x_2 \le 125$. This, together with (2), gives

 $x_2 = 125.$ (8)

From (7) and (8) we get that $x_1 + x_3 = 375$ so that

$$x_1 = 375 - x_3$$
. (9)

From (4) and (8) we get that

$$x_1 \ge 270 - 125 = 145.$$
 (10)

From (9) and (10) we get that $375 - x_3 \ge 145$ i.e. $x_3 \le 230$.

From (6) and (8) we get that

 $x_3 \ge 225.$ (10)

Thus the core is the set of triples (x_1, x_2, x_3) such that $x_1 = 375 - x_3$, $x_2 = 125$ and $225 \le x_3 \le 230$.