
Chapter 11

Statistical Inference for Multiple

Regression

Different samples will lead to different fitted regression lines, due to different random departures

in the data from the population conditional mean. Statistical inferential methods control for this

randomness.

This chapter presents the statistical properties of the least squares estimates and uses these

properties to construct confidence intervals and perform hypothesis tests on the population para-

meters.

11.1 Properties of the Least Squares Estimator

The assumptions and their consequences for multiple regression are essentially the same as those

for bivariate regression detailed in Chapter 7, except the population model now includes additional

regressors and conditioning is on these extra regressors. A more abbreviated treatment is given

here for multiple regression.

In this chapter we make the strong assumptions that model errors are independent and ho-

moskedastic, in which case inference is based on default standard errors. These assumptions can be

relaxed, in which case inference is based on robust standard errors that are presented in Chapter

12.1 and that lead to different  statistics, -values and confidence intervals.

11.1.1 Data Assumptions

Throughout it is assumed that all the OLS coefficients can be computed. This requires that the

sample size exceeds the number of regressors (including the intercept), that there is variation in

the sample values taken by each regressor, and that there is no exact linear relationship between

the regressors.

If these conditions are not met then regression output from most statistical packages will not

report coefficients for all regressors. Instead the computer output will indicate that one or more

regressors (or the intercept) are omitted, or will simply have no entry for one or more regressors.
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11.1.2 Population Line or Population Conditional Mean

The population relationship between  and 2   is defined by E[ |2 = 2  = ], the
population conditional mean of  given 2 = 2  = . This is the probability-weighted

average of all possible values of  in the population given2 = 2  = . In the econometrics

literature it is standard to write the population conditional mean more simply as E[|2  ].
For linear regression it is assumed that conditional mean is a linear function of the regressors.

Thus we write that the conditional mean or conditional expectation function or population

line is

E[|2  ] = 1 + 22 + · · ·+ 

The goal is to estimate the population parameters 1 2   as then we can make predictions,

and we can estimate the effect on the conditional mean of changing one or more of the regressors.

Remark 87 E[|2  ] denotes the conditional mean of  given 2 = 2  = , the

probability-weighted average of all possible values of  in the population given 2 = 2  = .

For linear regression E[|2  ] = 1 + 22 + · · ·+ .

11.1.3 Population Assumptions

To obtain the statistical properties of the OLS coefficients we need to make assumptions about the

population model and the sampling process that yielded the sample (1 1)  ( ).

We introduce the error term  and make the standard assumptions are that:

1. The population model is

 = 1 + 22 + 33 + · · ·+  +  for all 

2. The error for the  observation has zero mean conditional on all regressors:

E[|2   ] = 0 for all 

3. The error for the  observation has constant variance conditional on the regres-

sors:

Var[|2  ] = 2 for all 

4. The errors for different observations are statistically independent

 is independent of   for all  6= 

Assumptions 1-2 are the crucial assumptions that ensure that the population relationship be-

tween  and the regressors is a linear relationship. Specifically the population mean is then

E[|2   ] = 1 + 22 + 33 + · · ·+ 
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so that the data are generated by a linear population relationship. In that case it makes sense to

fit the data with a regression line.

Assumptions 3 and 4 are additional assumptions that are used in determining the precision and

distribution of the estimates 1 and 2. Assumption 3 implies that the error term is homoskedastic,

so the conditional variance of  is the same across observations, with

Var[|2  ] = 2

More detailed discussion of these assumptions was given in Chapter 6.3. See also Chapter 16.

11.1.4 Mean and Variance of a Least Squares Slope Coefficient

Let the typical regressor be the  regressor  . Then inference on its coefficient  is based on

the OLS estimate  . The following results are simply stated here. Proofs in the case of a single

regressor are given in Appendix C.1; see also Chapter 16.2.

The mean of the least squares estimate  is

E[ ] =    = 1 

given assumptions 1-2. So  is unbiased for  . If many samples were available, yielding many

estimates  , the average of the  equals  .

If we additionally make assumptions 3-4 then the variance of the least squares slope

coefficient  can be shown to be

Var[ ] = 2 =
2P

=1 e2 
where e denotes the residual from regressing  on an intercept and all regressors other than .

Remark 88 Under assumptions 1-2 the estimated slope coefficient  has mean equal to the pop-

ulation slope parameter . Under assumptions 1-4 the estimated slope coefficient  has variance

2 = 2
P

=1 e2, where e denotes the residual from regressing  on an intercept and all

regressors other than .

The variable e is a residual that measures the net information that the regressor  adds
beyond that obtained from the other regressors. Smaller values of e mean less net information is
conveyed and

P
=1 e2 will be smaller. At the same time 2 will decrease as the other regressors

improve model fit. So on balance Var[ ] may be bigger or smaller and  may be less or more

precisely estimated as additional regressors are added to the model.

11.1.5 Standard Error of a Least Squares Slope Coefficient

The variance of  depends in part on 
2
, the variance of the error term, which is unknown. Under

assumptions 1-4, an unbiased estimator of 2 is the standard error of the regression

2 =
1

− 

X

=1
( − b)2
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The standard error of  , the estimated standard deviation of  , is obtained by replacing 
2


in the formula for 2 by 
2
 and then taking the square root. Then

() =
pP
=1 e2 

11.1.6 When is a Slope Coefficient Precisely Estimated?

Given the formula for (2) the precision of estimation of 2 is better the closer the data are to
the true regression line (then  is small) and the larger is the sample size  (then there are more

terms in the sum). This is the same as in bivariate regression.

Additionally () is smaller the less  is explained by the other regressors 2  −1 +1  .
The simple intuition is that the coefficient of  will be more precisely estimated the more  adds

an independent piece of information, rather than duplicating information already contained in the

other regressors.

Algebraically, () is small if |e| is large since then P
=1 e2 is large. Since e =  − b

where b is the fitted value from regressing  on an intercept and all regressors other than ,

|e| is large when b does a poor job of predicting .
Remark 89 The standard error of  is () = 

pP
=1 e2, where  is the standard error of

the regression. Under assumptions 1-4 ()
2 has mean equal to the variance of . Bigger samples

are better — if the sample is  times larger then () is approximately 1
√
 times as large. And

wider dispersion of , after controlling for the other regressors, leads to greater precision.

11.1.7 The  Statistic

The -statistic for multiple regression is the exact analog of that for bivariate regression, with the

one change that the degrees of freedom are now −  rather than − 2.
Under assumptions 1-4,  ∼ (  2 ), so the standardized statistic  = ( − ) ∼ (0 1).

By the central limit theorem,  is standard normal distributed as  → ∞. However,  depends
on the unknown parameter 2. Replacing  by its estimate () leads to the  statistic.

Remark 90 For OLS regression on  regressors including the intercept, under assumptions 1-4

the  statistic

 =
 − 

()


is a realization of a randomly variable that is approximately  (− ) distributed, where  (− )
denotes the  distribution with (− ) degrees of freedom.

The  ( − ) approximation is exact if additionally the errors are normally distributed or if
→∞.
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11.1.8 How Large Should the Sample Be?

In general errors are not normally distributed and the  (− ) distribution is an approximation,
one that gets more reasonable as the sample size gets large. Unfortunately, there is no simple way

to determine whether the sample size for a particular data set and regression is adequate for the

 (− ) approximation to be good, though more advanced analysis using simulations can provide
some guidance. Thus there is no hard and fast rule for how large the sample size should be.

For bivariate regression with a single regressor many authors feel that there should be at least

thirty observations, though this is by no means sufficient for all types of data. For example, suppose

the dependent variable  takes only two values, such as a variable for whether or not an individual

is employed. Then a larger sample size will be needed since it is very unlikely that the error term

 has a continuous normal distribution when the dependent variable  is discrete and takes only

two values.

For multiple regression, as more regressors are added the sample size should be even larger.

If the sample size is too small then the distribution of the  statistic generally has fatter tails

than the  (−). As a consequence, confidence intervals based on the  (−) will be too narrow,
and hypothesis tests will tend to reject the null hypothesis too often.

The house price example used in several chapters of this book has only 29 observations. This

has the pedagogical advantage of, for example, making it easy to list the complete data. In practice,

however, it would be better to have a larger sample.

Aside from considerations of approximating the distribution of the  statistic, another reason

for not using samples that are too small is that estimation may be very imprecise, so that statistical

analysis is too noisy to be useful.

11.2 Estimators of Model Parameters

The first goal of inference is to obtain estimates of the population parameters 1  . This is

called point estimation, to distinguish it from interval estimation using confidence intervals.

11.2.1 Optimal Properties of OLS Estimators

The desirable properties of OLS in bivariate regression, presented in Chapter 6.4, carry over to

multiple regression.

First, the estimated OLS coefficients  are unbiased for the population slope parameters  ,

provided the population model satisfies assumptions 1 and 2 since then E[ ] =  .

Second, the estimated OLS coefficients  are consistent for the population slope parameters

 , if additionally Var[ ] goes to zero as →∞. This is the case under the additional assumptions
3 and 4, and under alternative assumptions such as those given in Chapter 7.7.

Third, under assumptions 1-4, the OLS estimates  are best linear unbiased (BLUE).

They have smallest variance among unbiased estimators that are a weighted average of  of the

form  =
P

=1 where the weights will depend on the regressors. This result is called the

Gauss-Markov Theorem.
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Fourth, if additionally the errors are normally distributed then the OLS estimates  are best

unbiased, meaning the have minimum variance among unbiased estimators. OLS is also the best

estimator among those estimators that are consistent and asymptotically normal, even if the errors

are not normally distributed.

Remark 91 The OLS estimators 1   are unbiased for 1   under assumptions 1-2, best

linear unbiased under assumptions 1-4, and best unbiased if additionally the more errors are nor-

mally distributed. In large samples the OLS estimators 1   are consistent for 1   under

assumptions 1-2, plus assumptions(s) such as assumptions 3-4 that ensure the estimators have finite

variance, and are best among consistent and asymptotically normal estimators under assumptions

1-4.

11.2.2 Relaxing Assumptions 1-4

The slope parameter estimates  will usually be biased and inconsistent if assumptions 1 and/or

2 are not satisfied. In that case alternative analysis is needed.

Often interest lies in the coefficient of a single regressor, say the coefficient of years of schooling

in an earnings-schooling regression that includes additional control variables. Alternative analysis

that may lead to consistent estimation of the key parameter of interest may entail using a different

functional form for the conditional mean, including additional control variables in the regression,

using data from a different source, and using an estimation method other than OLS (see Chapter

17).

Assumptions 3-4 generally effect only the estimation of the precision of  . These assumptions

can be relaxed. First, one can continue to estimate by OLS but use an alternative formula to

compute the standard errors of the OLS coefficient estimates; see Chapters 7.7 and 12.1. Second,

one can use alternative estimation methods that may lead to coefficient estimates that are more

precise than the OLS estimates; see Chapter 12.4 for further discussion.

11.3 Confidence Intervals

11.3.1 Confidence Intervals

As usual, the confidence interval is the estimate plus or minus the relevant critical value times the

standard error of the estimate.

Remark 92 A 100(1− ) percent confidence interval for the slope parameter  is

 ± −2 × ()

where  is the OLS slope coefficient, −2 is that value such that a  (−) distributed random
variable exceeds it in absolute value with probability , and () is the standard error of the slope
coefficient estimate .
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This confidence interval is exact only if assumptions 1-4 hold and the errors are normally

distributed.

The interpretation of the confidence interval is the same as that detailed in Chapter 7.3 for

bivariate regression. A 95% confidence interval for  is interpreted as an interval that has prob-

ability 095 of including  . That is, if we had many repeated samples leading to many different

confidence intervals, 95% of these confidence intervals will include the true unknown value of 
and 5% will not.

11.3.2 Example: House Price and Size

As an example, consider the house price data in dataset HOUSE. Output from regression of house

price on an intercept and six other regressors was presented in Table 10.4. For regressor Size, the

output lists the 95 percent confidence interval to be (3645 10029).
This confidence interval can be computed from first principles as follows. The output gives

Size = 6837, from the coefficient column, and (Size ) = 1539, from the standard error column.

And here −2 = 22;025 = 2074. Then a 95% confidence interval for Size is

Size ± −2 × (Size ) = 6837± 2074× 1539 = 6837± 3192 = (3645 10029)

11.4 Hypothesis Tests on a Single Parameter

The presentation here is brief. Chapter 12.6 provides a more detailed discussion of the issues

involved in hypothesis testing.

11.4.1 Tests on Individual Parameters

Consider tests on the  regression parameter  . A two-sided test or two-tailed test on the

parameter  is a test of 0 :  = ∗ against  :  6= ∗ , where 
∗
 is a specified value for  .

The null hypothesis is rejected when  is far from ∗ . Equivalently the null hypothesis is
rejected if the  statistic  = ( − ∗ )() is large. Under the null hypothesis that  = ∗ and
under assumptions 1-4, the  statistic is approximately a draw from the  (− ) distribution (and
exactly a draw from the  (−) distribution if additionally model errors are normally distributed).
The null hypothesis is rejected if the observed value || is so large that it is very unlikely to have
observed this value, if indeed0 was true so that the  statistic was indeed a draw from the  (−).

Similar to the bivariate case, this leads to the following.

Remark 93 For a two-sided test of 0 :  = ∗ against  :  6= ∗ the  statistic

 =
 − ∗
()

is a draw from the  ( − ) distribution, approximately, if 0 is true. The -value is  =
Pr[|−| ≥ || ] and 0 is rejected if   , where  is the desired significance level of the



224 CHAPTER 11. STATISTICAL INFERENCE FOR MULTIPLE REGRESSION

Table 11.1: Hypothesis tests on slope parameter: Summary for multiple regression.

Two-sided One-sided One-sided

Test Upper alternative Lower alternative

Null hypothesis 0 :  = ∗ 0 :  ≤ ∗ 0 :  ≥ ∗
Alternative Hypothesis 0 :  6= ∗ 0 :   ∗ 0 :   ∗
 statistic  = ( − ∗ )()  = ( − ∗ )()  = ( − ∗ )()
p-value  = Pr[|−| ≥ ]  = Pr[− ≥ ]  = Pr[− ≤ ]
Rejection rule         

Critical value  = −2  = −  = −−
Rejection region ||        

test. The critical value  is such that  = −2, equivalently Pr[|−| ≥ ] = , and 0 is

rejected at significance level  if ||  .

It is also possible to perform a one-sided or one-tailed test. In that case the claim to be tested

is set as the alternative hypothesis. Table 11.1 summarizes one-sided and two-sided hypothesis tests

on the population parameter slope coefficient.

11.4.2 Relationship between  test and Adjusted R-Squared

It can be shown that the adjusted R-squared, ̄2, increases as one regressor is added to the model if

and only if a test for statistical significance of this regressor, one based on default standard errors,

yields ||  1.
By contrast a hypothesis test at the usual significance level of 005 has a much higher threshold

such as ||  196 for a large sample size. It follows that an increase in ̄2 does not necessarily

imply statistical significance of the additional regressor(s) at conventional levels of significance such

as  = 005. While ̄2 provides a penalty for large model size, the penalty is weak.

11.4.3 Tests of Individual Statistical Significance

A special case of tests on an individual parameter is a test of statistical significance, in which

case the hypothesized value of  is 
∗
 = 0.

Regression packages print out the necessary statistics to automatically test this hypothesis,

including both the  statistic and the -value for the test of 0 :  = 0 against  :  6= 0. An
example is given in Table 10.4. 0 is rejected at statistical significance level  if   . If instead

   we do not reject 0, and conclude that there is no statistically significant relationship or

equivalently, that the regressor is statistically insignificant. The most common choice of  is 0.05,

followed by 0.01 and 0.10.

It is most common to perform two-sided tests of statistical significance, so computer output

reports the -value for a two-sided test. If we have prior beliefs about the sign of  , however,

then this prior belief can be employed by performing a one-sided test. The prior belief is setup as

the alternative hypothesis, as explained in Chapter 4.6. For example, since we believe that house
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price increases with size, a one-tailed test of significance of house size may be a test of 0 :  ≤ 0
against  :   0. In that case we halve the printed -value, provided the estimate  is positive.

There can be ambiguity in the statement that “the regressor is statistically significant at sig-

nificance level 005”, as it is not always made clear whether a one-sided or two-sided test was
performed. Most often tests of statistical significance are performed as two-sided tests, even if

there are strong prior beliefs on the direction of the relationship.

Statistical significance by itself does not imply automatically that the regressor has economic

significance. As discussed in Chapter 7.4.3, an economically significant regressor has coefficient

 that is large enough that changing  is associated with meaningful changes in the dependent

variable. Statistical significance is determined by the size of the  statistic which is the coefficient

 scaled by (). Economic significance is instead determined only by whether the coefficient 
is “small” or “large”. This is a subjective judgement that is context specific.

11.4.4 Example: House Prices

As an example we consider regression of house sale price on several regressors using dataset HOUSE.

The example is illustrative. We use default standard errors that presume errors are homoskedas-

tic. For these data it is standard to instead use heteroskedastic-robust standard errors; these are

presented in Table 12.2. And a better way to incorporate the variable Lotsize, one that takes the

three arbitrary values 1, 2 and 3, is to use a set of indicator variables, presented in Chapter 14.4.

Results are given in Table 11.2, which repeats Table 10.4.

The only regressor that is statistically significant at significance level 005 is Size with  = 0000.
The next most statistically significant regressor is Age with a -value of 0259 that is much higher
than 005.

Suppose that instead of a test of statistical significance we wish to test whether an increase in

house size of one square foot is associated with a $50 increase in house price. For test of0 : Size =
50 against 0 : Size 6= 50,  = (6837− 50)1539 = 1194. Then  = Pr[|22|  |1194|] = 0245 so
we do not reject 0 at significance level 005.

Looking at the magnitude of the coefficients, the estimate Size = 6837 means that a 100 square
foot increase in size, equivalent to a small room that is ten feet by ten feet, is associated with a

$6,837 increase in house price, an economically meaningful effect. An additional bathroom is also

associated with a substantial increase in house price, but this estimate is so imprecise (the 95%

confidence interval is from −$25,771 to $39,437) that no attention should be paid to it.
We conclude that house size is the primary determinant of house price in this market.

One reason for the lack of importance of the other regressors may be that, aside from size, the

houses are quite homogeneous as they are of similar vintage and are in a small part of a small city.

A real estate maxim is “location, location, location”, and here location has already been controlled

for by choosing to focus on a fairly homogenous region.

A second reason for statistical insignificance of the other regressors may be the small sample

size.

A third reason may be that in fact collectively the house attributes other than size may matter,

even if individually each attribute is not statistically significant. This can be tested using the 

test presented below.
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Table 11.2: House price: Computer output from multiple regression.

Summary Statistics

Observations 29

R-squared 0.651

Adjusted R2 0.555

St. error of regression 24936

Dependent Variable Price

Regressor Coefficient Standard Error t statistic p value 95% conf. int.

Size 68.37 15.39 4.44 0.000 36.45 101.29

Bedrooms 2685 9193 0.29 0.773 -16379 21749

Bathrooms 6833 15721 0.43 0.668 -25771 39437

Lot Size 2303 7227 0.32 0.753 -12684 17290

Age -833 719 -1.16 0.259 -2325 659

Monthsold -2089 3521 -0.59 0.559 -9390 5213

Intercept 137791 61465 2.24 0.035 10321 265261

ANOVA Table

Source SS df MS F p-value

Explained 2.5466×1010 6 4.2444×109 6.83 0.0003

Residual 1.3679×1010 22 0.6218×109
Total 3.9146×1010 28 0.1398×109

11.4.5 Tests of a Single Hypothesis on more than One Parameter

The  test can be extended to test a single hypothesis that involves more than one parameter. The

following example can be adapted to other cases of a single hypothesis.

Suppose we want to test whether or not 2 = 3. Equivalently we want to test 0 : 2−3 = 0
against 0 : 2 − 3 6= 0. This difference can be estimated by 2 − 3 which has standard error

(2 − 3), leading to the  statistic

 =
2 − 3

(2 − 3)


We reject 0 at level 005 if  = Pr[|−|  ||]  005.
This test requires calculating (2−3) =

p
2(2)− 223 + (3)2, where 23 is the estimated

covariance between 2 and 3. But 23 is not automatically provided in standard regression output.

Fortunately, many statistical software packages provide a command to implement such tests,

yielding the  statistic (or in some cases the square of the  statistic) and the associated -value.

If this is not the case then the test can be implemented as follows. Rewrite the model as

 = 1 + 22 + 33 + 44 + · · ·+  + 

= 1 + (2 − 3)2 + 3(2 + 3) + 44 + · · ·+  + 

Then regress  on an intercept, 2, (2+ 3), 4   and perform a regular  test of whether the

coefficient of 2 equals zero.
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As an example, suppose we want to test whether the coefficient of Bedrooms equals that of

Bathrooms. We create a variable Bedplusbath equal to the sum of Bedrooms and Bathrooms and

regress Price on Size, Bedrooms, Bedplusbath, Lotsize, Age and Monthsold. The regressor Bedrooms

has coefficient −4148, standard error 17806,  = −0233 and  = 0818. We do not reject at level
0.05 the null hypothesis that  = 

11.5 Joint Hypothesis Tests

For multiple regression we often wish to test more than one restriction on the parameters. For

example we may wish to test whether or not both 2 = 0 and 3 = 0. A more complicated example
is a test that both 2 = −3 and 24 + 6 = 9.

There are two reasons for performing such tests. One reason is to determine which regressors

should be included in the regression model. Models with fewer regressors are often preferred, for

reasons of simplicity and because more precise estimates can be obtained if unnecessary regressors

are excluded from the model. A second reason is to test restrictions implied by economics theory.

These joint hypothesis tests use test statistics that are most often  distributed, rather than

the  distributed. (A variation using the chi-squared distribution is presented later in this section).

The test statistics take only positive values so rejection of the null hypothesis occurs if the test

statistic takes large positive values.

For joint hypotheses the test statistics are in general a complicated function of coefficient esti-

mates and their associated standard errors and estimated covariances. Many statistical packages

provide a command to implement joint tests, and all statistical packages provide as output a joint

test of whether or not the regressors are jointly statistically significant, a test of 0 : 2 = 0,
3 = 0, ...,  = 0.

In the special case of independent, homoskedastic errors (assumptions 1-4) it is possible to

calculate  test statistics using residual sums of squares. Such calculation does not generalize to

inference based on robust standard errors, such as heteroskedastic robust. But it provides useful

insights and it is presented in Chapter 11.6.

11.5.1 The  Distribution

The distribution is a continuous right-skewed distribution for a random variable that takes only

positive values. The distribution depends on two parameters, called the first and second degrees of

freedom, and is denoted  (1 2) where the degrees of freedom 1 and 2 are positive integers.

Note that the order of the degrees of freedom matters, as  (1 2) 6=  (2 1). The mean
exists if 2  2 and equals 2(2 − 2), so the mean approaches one as 2 gets large which is the
case in regression samples when the sample size gets large. When 1 = 1 the  distribution reduces
to the square of the  distribution, i.e. 12 = (2)

2.

In regression applications 1 is the number the number of parameter restrictions being tested,

so is small, and 2 = − , the regression degrees of freedom.

Figure 11.1 presents the probability density function of the  distribution for (1 2) = (3 30)
and (1 2) = (10 30).
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Figure 11.1: F distribution: F(3,30) and F(10,30)

Remark 94 The F(v1,v2) distribution is a right-skewed distribution, with degrees of freedom v1
and v2, for a random variable that takes only positive values. 12 denotes the value for which

the area in the right tail of the distribution equals .

11.5.2 Probabilities and Inverse Probabilities for the  Distribution

Probabilities for the  distribution are given by the area under the curve and require use of an

appropriate computer command. For example, in Stata Pr[1030  2] = Ftail(10,30,2).

Inverse probabilities or critical values for the  (  − ) distribution can be obtained
form an appropriate computer command. For example, in Stata 103005 = invFtail(10,30,.05).
Alternatively, tables give these at different degrees of freedom and at key significance levels such

as 0.10, 0.05 and 0.01. The critical values decrease as the number of restrictions () increases, the
degrees of freedom in the unrestricted model ( − ) increases, and as test significance level ()
increases. Table 11.3 provides some examples and Appendix E provides more detailed tables.

Unlike  critical values,  critical values are difficult to interpret directly and it is much easier to

rely on -values computed by a statistical package. If these are unavailable note that if −   10
then 0 is always rejected at level 005 if   5, regardless of the size of .

For tests of a single restriction we use the  (1  − ) distribution which is the square of the
 (− ) distribution. Since the 5% critical value for the  (∞) distribution is 196, it follows that
the 5% critical value for the  (1∞) distribution is 1962 = 384.
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Table 11.3: F distribution: Critical values for various degrees of freedom and confidence levels.

Test size  = 1  = 2  = 3  = 10  = 20

10% −  = 30 2.88 2.49 2.28 1.82 1.67

−  =∞ 2.71 2.30 2.08 1.60 1.42

5% −  = 30 4.17 3.32 2.92 2.16 1.93

−  =∞ 3.84 3.00 2.60 1.83 1.57

1% −  = 30 7.56 5.39 4.51 2.98 2.55

−  =∞ 6.64 4.61 3.78 2.32 1.88

11.5.3 The  Statistic

The  statistic applies to models that are nested in each other.

The more general model, called the unrestricted model or complete model, is a model with

 regressors, so

 = 1 + 2+ 33 + · · ·+  + 

The restricted model or reduced model is a model that places restrictions on the parameters

1 2  . Most often this restricted model is one that omits some of the regressors, so that

some of the 0 are set to zero.
Let  denote the number of restrictions imposed by the restricted models. If just one regressor

is dropped then  = 1 while if all regressors but the intercept are dropped then  =  − 1
In general the formula for the  statistic is complicated. As an example, suppose we wish to

test the two restrictions 2 = 0 and 3 = 0. So we test 0 : 2 = 0, 3 = 0 against  : at least
one of 2 6= 0, 3 6= 0. Then it can be shown that

 =
[2(2)

2 − 22323 + 2(2)
2]2

(2)2(3)2 − 223

where 23 is the estimated covariance between 2 and 3.

For the moment we assume that computer output provides the desired  statistic. In the subse-

quent section we present formulas in the special case that errors are independent and heteroskedastic

so that assumptions 1-4 hold and we can use default standard errors.

11.5.4  Tests

The main use of the  statistic is in hypothesis testing.

Definition 27 An  test is a two-sided test of 0 : The  parameter restrictions implied by the
restricted model are correct against the alternative hypothesis  : At least one of the  parameter
restrictions implied by the restricted model is incorrect

The  statistic is necessarily positive and large values of the  statistic lead to rejection of 0.
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Remark 95 The -value for the  test of  restrictions is  = Pr[− ≥  ], and 0 is rejected

if   , where  is the desired significance level of the test. The critical value  is such that

 = −, equivalently Pr[|−| ≥ ] = , and 0 is rejected at significance level  if   .

Note that the  test is a two-sided test. It is true that the  test -value or critical value

is calculated using only one tail, the right tail, of the  distribution. But the test itself is a two-

sided test because in the case of testing exclusion of several regressors, for example, the alternative

hypothesis can only be that parameters are not equal to zero rather than, for example, greater than

zero. A one-sided  test is not possible.

The leading examples of the  test are now presented.

11.5.5 Test of Overall Significance

The first test, called as test of overall significance, is a test of whether or not the regressors

taken together add substantially to predictive ability compared to an intercept-only model. The

null hypothesis is that only an intercept is needed, so all the slope parameters equal zero, while the

alternative hypothesis is that at least one of the slope coefficients differs from zero.

Remark 96 A test of overall significance is a two-sided test of 0 : 2 = 0   = 0,
against the alternative hypothesis  : At least one of 2 6= 0   6= 0

Most statistical packages automatically print out the  statistic for test of overall significance,

along with its associated -value. If   005, for example, then the regressors are said to be jointly
statistically significant at significance level 005.

For the house price example  = 7 and  = 29, so a test if overall significance tests  = 6
restrictions and  −  = 22. The output in Table 11.2 includes  (6 22) = 683 with  = 00003.
Since   005 we conclude that the regressors are jointly statistically significant at level 005.

Note that the  test is merely a test of whether at least one regressor is statistically significant,

not that all regressors are statistically significant. In this example from Table 11.2 only one of the

regressors, Size, is individually statistically significant at level 005.

11.5.6 Test of Subsets of Regressors

Tests of a subset of regressors or of exclusion restrictions compare two models with one

model a reduced version of the other and test whether the additional regressors in the unrestricted

model are jointly statistically significant. This test is often used to test the joint statistical signif-

icance of sets of indicator variables, such as for geographic region or for ethnic background, that

are presented in Chapter 14.4.

The unrestricted model or complete model with  regressors is specified to be

 = 1 + 22 + · · · + +1+1 + · · ·+  + 

The restricted model or reduced model is specified to include only the first  regressors so

 = 1 + 22 + · · · + 

The restricted model is therefore obtained by setting  −  slope coefficients to zero.
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Remark 97 Let the last  =  −  regressors be omitted in the restricted model. Then a test of

a subset of regressors is a two-sided test of 0 : +1 = 0   = 0, against the alternative
hypothesis  : At least one of +1 6= 0   6= 0

Return to the house price example. We have shown that house size is the only one of the six

regressors that is individually statistically insignificant. A natural question to ask is whether the

five regressors when taken together are statistically significant, or whether a model with just house

size as a regressor is adequate. This is a test of five restrictions. Using a specialized test command

yields  = 0417 with  = 0832  005 so we do not reject 0 : 3 = 0  7 = 0 at significance
level 005. We conclude that the additional five regressors are jointly statistically insignificant. It
is best to just include Size as a regressor.

Statistical packages that provide a post-estimation test command that computes this  test

may additionally enable test of more complicated hypotheses, such as a test of 0 : 2 + 3 = 1,
4 = 2 against 0 : At least one of 2 + 3 6= 1, 4 6= 2.

11.5.7 Test of a Single Regressor

The  test for subsets of regressors can be used to test whether a single regressor is statistically

significant, in which case  = 1. This  test yields exactly the same result as that from a two-sided
 test of statistical significance.

First, it can be shown algebraically that for  = 1 the  test statistic is the square of the usual

 test statistic, so  = 2. Second, a random variable with  ( − ) distribution when squared is
 (1 − ) distributed.

It follows that when  = 1, the  -test critical value equals the square of the critical value for a
two-sided  test. So a two-sided -test critical value of 1.96 corresponds to an  -test critical value

of 1962 = 384.

Remark 98 The F test for statistical significance of a single regressor is equivalent to a two-sided

 test, since  = 2 and Pr[|−|  ] = Pr[1−  2].

For example, using a specialized test command to test whether Bedrooms is statistically sig-

nificant yields  = 0085 with  = Pr[1−  0085] = 0773. From Table 11.2 the regressor

Bedrooms has  = 0292, so 2 = 02922 = 0085 =  , and the same  = 0773

11.5.8 Computation of Tests in a Statistical Package

OLS regression output includes tests of statistical significance for each regressor and the test of

overall significance. For more complicated tests such as tests of subsets of regressors in Stata one

uses the test and testparm commands; see Appendix A.2 for an example. In R one can use the

linearHypothesis function in the car package; see Appendix A.3 for an example. In Gretl use

the restrict command with option wald. In Eviews use the wald view.
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11.5.9 Chi-squared Distribution

The  distribution goes to the standard normal distribution as the degrees of freedom go to infinity,

that is the  (∞) distribution is the (0 1) distribution.
A similar limit result exists for the  distribution. A random variable that has an  (∞)

distribution when multiplied by  has the chi-squared distribution with  degrees of freedom,

denoted 2(). The 2() distribution has mean  and variance 2.
Some statistical commands report a 2 statistic that is 2 distributed rather than an  statistic

that is  distributed. In that case note that a 2() random variable divided by its degrees of

freedom  has the  (∞) distribution. For example, a 2(10)-distributed test statistic of 40
corresponds to an  (10∞)-distributed test statistic of 4010 = 4.

11.5.10 Separate Tests of Many Hypotheses

This section has considered jointly testing several hypotheses, such as whether the regressors are

jointly statistically significant. What if instead we perform a series of separate tests?

Suppose we run twenty independent hypothesis tests at significant level 005 when in all twenty
cases the null hypothesis is correct and there is no relationship. Then there is very high probability

that at least one of the twenty tests rejects and obtains a spurious result. To see this, note that

for a test of size 005 the probability of an individual test not rejecting when there is indeed no
relationship is 1−005 = 095. The probability of none of the twenty tests not rejecting is therefore
09520 = 0358. So the probability of at least one of the twenty tests rejecting is 1− 0358 = 0642.

Thus if we do many tests of statistical significance there is a high chance of finding relationships

even where they do not exist.

One should therefore be sceptical about claims that, for example, eating fish has beneficial effects

for the heart if it is likely that the study did a battery of separate tests on models that included

a range of foods as regressors, or included a range of health outcomes, and used the usual critical

values for each test. Similarly one should be sceptical of claims that a particular investment strategy

is a winning strategy because it has historically outperformed the market. Many researchers will

have tested many strategies using the same data and there is a bias to reporting only the historically

best strategies.

What can be done to avoid erroneously finding results? More advanced methods for multiple

testing that are beyond the scope of this text can provide an estimate of test size when multiple

tests are performed. There are also simpler versions of these methods but unfortunately these

are too conservative as they actually over-estimate the size in the common case that the tests are

positively correlated rather than independent.

The simplest solution is to minimize the use of separate tests and as much as possible use joint

hypothesis tests that simultaneously test several hypotheses.

11.6  Statistic under Assumptions 1-4

We now specialize to the special case of independent, homoskedastic errors (assumptions 1-4). It

is then possible to calculate  test statistics using residual sums of squares.
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Intuitively if the fit of the restricted model is very close to that of the unrestricted model we

should favor the restricted model since it is a smaller model, whereas if the difference is great then

the cost of imposing the restrictions is too high and we should favor the unrestricted model.

Under assumptions 1-4 this intuition can be formalized, using the residual sum of squares,P
=1( − b)2, as a measure of model fit. Let ResSS  denote the residual sum of squares in the

restricted model, and ResSS denote the residual sum of squares in the unrestricted model. Then

ResSS   ResSS since OLS minimizes the residual sum of squares and this minimum will be

lower in the more general unrestricted model. A large value for ResSS −ResSS indicates that the
restricted model has much worse fit, so we should not use the restricted model. The  statistic

uses an appropriate rescaling of ResSS −ResSS.

Remark 99 Under assumptions 1-4 the F statistic can be computed as

 =
(ResSS −ResSS)
ResSS(− )



where ResSS denotes residual sum of squares, subscripts  and  denote the restricted and unre-

stricted models,  is the number of parameter restrictions,  is the number of observations, and 

is the number of regressors in the unrestricted model.

This statistic is exactly  ( −) distributed if additionally the data are normally distributed.

11.6.1 Test of Overall Significance under Assumptions 1-4

For tests of overall significance we have the following simplifications. First, there are  =  − 1
restrictions. Second, the restricted model is regression of  on an intercept that yields 1 = ̄, so

ResSS  =
P

=1( − ̄)2. But this is just TSS, the total sum of squares in the unrestricted model.

So ResSS −ResSS = TSS− ResSS= ExpSS, since the total sum of squares in the unrestricted

model can be decomposed as TSS= ExpSS+ ResSS.

Remark 100 Under assumptions 1-4 A test of overall significance is a two-sided test of

0 : 2 = 0   = 0, against the alternative hypothesis  : At least one of 2 6= 0   6= 0.
Then the general formula simplifies to

 =
(ExpSS)( − 1)
ResSS(− )



where ExpSS and ResSS are, respectively, the explained and residual sum of squares in the unre-

stricted model.

The  statistic can be directly calculated from an ANOVA table. For the house price example

it is the ratio of the first two terms in the last column in Table 11.2. From the MS column of that

table, (ExpSS)(− 1) = 4244× 109 and (ResSS)(− ) = 06218× 109. The ratio is then 683,
which was given as the entry  (6 22) = 683.
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The  statistic can also be expressed in terms of 2 as

 =
2( − 1)

(1−2)(− )


This implies that  necessarily increases as 2 increases. The  statistic essentially provides a

threshold for the increase in2 before we can say that the regressors lead to a statistically significant

improvement in model fit.

Returning to the house price example, 2 = 06506 and the formula for  in terms of 2 yields

 = (65066)(349422) = 683.

11.6.2 Test of Subsets of Regressors under Assumptions 1-4

For tests of subsets of regressors we need the restricted sum of squares in restricted and unrestricted

models.

For the house price example consider test of whether the five regressors other than house size

when taken together are statistically significant, or whether a model with just house size as a

regressor is adequate.

From Table 11.2, ResSS = 13679× 1010 in the unrestricted model that includes all six regres-
sors. The restricted model is a bivariate regression of house price on house size. From Table 5.5 in

Chapter 5.7, ResSS  = 14975× 1010. Then

 =
(14975× 1010 − 13679× 1010)5

13679× 101022 = 0417

Since  = Pr[522  0417] = 0832  005, we do not reject 0 : 3 = 0  7 = 0 at significance
level 005.

11.6.3 Relationship between  test and Adjusted R-Squared

Under assumptions 1-4 it can be shown that the adjusted R-squared, ̄2, increases as one or more

regressors are added to the model if and only if the  statistic for these additional regressors exceeds

one.

By contrast an  test at the usual significance level of 005 has a much higher threshold than
  1. It follows that an increase in ̄2 does not necessarily imply statistical significance of the

additional regressors at conventional levels of significance such as  = 005. While ̄2 provides a
penalty for large model size, the penalty is weak.

Remark 101 As regressors are added the adjusted R-squared increases if and only if   1 where
 is the test statistic for test of joint statistical significance of the additional regressors computed

under assumptions 1-4.
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11.7 Presentation of Regression Results

Published articles differ in the method of presentation of regression results due to a desire to

economize on space used in reporting results. Key slope coefficients are always reported, though

not necessarily all coefficients if there are many regressors. 2 is usually reported and the  statistic

for overall significance is usually reported.

There is great variation in the extent to which combinations of the standard error,  statistic

(for test that the population coefficient equals zero), and its associated -value are reported. Given

knowledge of one of these three, and knowledge of the slope coefficient, it is always possible to

compute the other two. For example, for the  regressor given  and (), we can compute
 = () and  = Pr[|−| ≤  ] where − ∼  (− ). Similarly, given  and  we can

compute () =  . Finally confidence intervals can be computed given  and ().
It is easiest if all four of  , (),  and  are reported, along with confidence intervals.

Indeed these are all given in typical computer output. But for space reasons, especially if there are

several different models estimated or if the models have additional regressors, it is quite common

for published studies to report only  and one of (),  and  

Thus for regression of house price on house size and the number of bedrooms, using default

standard errors, we might report the coefficients and standard errors

\Price = 111691
(27589)

+ 7241
(1330)

× Size + 1553
(7846)

× Bedrooms 2 = 0618

Alternatively we may report the coefficients, along with  statistics for whether the population

coefficients equal zero

\Price = 111691
(405)

+ 7241
(544)

× Size + 1553
(020)

× Bedrooms 2 = 0618

Or just the coefficients and -values (for test of  = 0) may be reported

\Price = 111691
(0000)

+ 7241
(0000)

× Size + 1553
(0845)

× Bedrooms 2 = 0618

A fourth possibility is to report the 95% confidence intervals, possibly also with the coefficients

Price = 111691
(54980168401)

+ 7241
(45079975)

× Size + 1553
(−1457617683)

× Bedrooms 2 = 0618

And yet another possibility, one that takes less space, is to report just coefficients along with

asterisks that indicate the level of statistical significance. Then one, two, or three asterisks are

used for statistical significance levels of, respectively, 10%, 5%, and 1%. Thus

Price = 111691∗∗∗ + 7241× Size∗∗∗ + 1553× Bedrooms 2 = 0618

Table 11.4 presents results reported using these various methods of presentation. Since there

are various ways to compute the standard errors it is good practice to additionally include a table

footnote stating the method used.

Using any of these alternatives we can verify that the slope coefficient is statistically significant

at level 005. And while we have focused on the slope coefficient it is clear from this output that

the intercept is also statistically significant at level 005.
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Table 11.4: Regression estimates: Various ways to report the results.

Results 1 Results 2 Results 3 Results 4 Results 5

In parentheses: Standard errors t statistics p-values 95% Conf. int.

Size 72.41 72.41 72.41 72.41 72.41∗∗∗

(13.30) (5.44) (0.000) (45.07,99.75)

Bedrooms 1553 1553 1553 1553 1553

(7847) (0.20) (0.845) (-14576,17682)

Intercept 11691 11691 11691 11691 11691∗∗∗

(27589) (4.05) (0.000) (54981,168401)

R2 0.618 0.618 0.618 0.618 0.618

F(2,26) 21.93 21.93 21.93 21.93 21.93

n 29 29 29 29 29

Note: Default standard errors are used.

11.8 Key Concepts

1. The methods of statistical significance are generally similar to those used in the bivariate

case, except the population model includes additional regressors and conditioning is on these

additional regressors.

2. It is assumed that there is sufficient variation in the regressor values across observations to

enable computing the OLS coefficients.

3. For linear regression E[|] = 1 + 22 + · · ·+ .

4. Population Assumptions 1-4 now condition on 2   and not just .

5. Under assumptions 1 and 2, 1   are unbiased estimators and, with additional assumptions

such as assumptions 3 and 4, consistent estimators of 1  .

6. Under assumptions 1-4, least squares is the best linear unbiased estimator. If additionally

the errors are normally distributed then least squares is the best estimator.

7. The slope coefficient standard error () is smaller the better the regression line fits the
data, the larger the sample, and the greater the variability of the regressors in the sample,

after controlling for the other regressors.

8. Statistical inference on  is based on  = ( − )() that is treated as being  (− )
distributed.

9. Confidence intervals for  and hypothesis tests on  are similar to the bivariate case except

that the  (− ) distribution is used.

10. Joint hypothesis tests on several parameters can be implemented using an  test.

11. A test of overall significance is a test of whether 2 = 0   = 0.
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12. A test of subset of regressors is a test of whether a subset of +1   is equal to zero.

13.  is approximately  (  − ) distributed under the null hypothesis that the  parameter
restrictions are correct.

14. In general the formula for  is complicated.

15. In the special case of inference under assumptions 1-4,  = [(ResSS −ResSS)]ResSS(−
)] where ResSS is the residual sum of squares and subscripts  and  denote, respectively,

the restricted and unrestricted models.

16. Regression results given in published articles usually give the estimated coefficients along with

just one of the following: standard error,  statistic, -value and 95% confidence interval.

17. Key terms: population model; error term; disturbance term; assumptions 1-4; standard er-

ror of the regression coefficient; standard error of the regression;  statistic;  distribution;

degrees of freedom; parameter; unbiased; best unbiased; best linear unbiased; confidence in-

terval; confidence region; null hypothesis; alternative hypothesis; one-sided test; two-sided

test; rejection; -value; critical value; critical region;  distribution;  test; test of overall

significance; test of subsets of regressors.

11.9 Exercises

1. Suppose the population model is  = 1 + 22 + 33 +  and [|] = 0. We obtain a fitted
regression line b = 17 + 252 + 173. For an observation with (2 3 ) = (2 4 178) give
each of the following.

(a) The conditional mean of  given . (b) The error term. (c) The fitted value of .

(d) The residual term.

2. Repeat exercise 1 with  = 2 + 22 + 33 +  and b = 25 + 122 + 373 and observation
(2 3 ) = (3 2 12).

3. Suppose  = 3 + 52 + 143 +  with  ∼ (0 9).

(a) Give the conditional mean of  given . (b) Give the conditional variance of  given .

4. For each of the following state when the slope coefficient is likely to be more precisely esti-

mated, holding other things constant.

(a) The sample size is 100 or the sample size is 400.

(b) The regressor of interest ranges from 30 to 40 or the regressor ranges from 0 to 70.

(c) The error term has variance 2 or the error term has variance 10.
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5. The population model is  = 1+22+43+  where the error term has conditional mean

0 and conditional variance 42 .

(a) Will the OLS estimator of 2 be unbiased? Explain.

(b) Will the OLS estimator of 3 be unbiased? Explain.

(c) Will the OLS estimator of 2 have the variance given in Chapter 11.1? Explain.

6. For each of the following situations state whether the OLS estimator of a slope coefficient is

unbiased and whether its variance is that given in Chapter 11.1.

(a) Assumptions 1-4 hold.

(b) Assumptions 1-2 hold but assumptions 3-4 do not hold.

(c) Assumptions 1-2 do not hold but assumptions 3-4 do hold.

7. A detailed description of dataset SALARYSAT is given in exercise 3 of Chapter 7. We

consider the relationship between salary (salary) and satmath, satverb, age and highgrade.

Use heteroskedastic-robust standard errors.

(a) Obtain the correlations between the variables. Which variable is most highly correlated

with salary?

(b) Regress salary on the other variables. Which variables are statistically significant at

5%?

(c) Do any of the regressors have coefficients with unexpected sign? Explain.

(d) Provide an interpretation of the coefficient of satmath.

(e) Are the regressors jointly statistically significant at 5%? Explain.

(f) Which model has better fit: this model or the model with just satmath as a regressor?

Explain.

(g) Are the variables other than satmath jointly statistically significant at 5%? Explain.

8. Repeat the previous exercise using dataset HOUSE2015 described in exercise 7 of Chapter 5.

Regress price on an intercept, size, bedrooms, bathrooms and daysonmarket. Compare models

with just size as a regressor with the models with all the regressors.
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9. A detailed description of dataset SALARYSAT is given in exercise 3 of Chapter 7. We

consider the best fitting relationship between salary (salary) and most of the other variables.

Use heteroskedastic-robust standard errors.

(a) Regress salary on satmath, satverb, highgrade, age, sex, minority, height, weight and

genhealth.

(b) Sequentially drop the least statistically significant variable until you have a model where

all included regressors are statistically significant at 5%. List the variables in the order

dropped, and list the retained variables.

(c) Now separately add back into your preferred model each of the dropped variables. Do

any of them become statistically significant at 5%?

10. Repeat the previous exercise using dataset HOUSE2015. Regress price on an intercept, size,

bedrooms, bathrooms and daysonmarket.

11. Consider regression with  = 50 observations,  = 7 regressors including the intercept and
test at 5% of the overall statistical significance of the regressors.

(a) If  = 30 do you reject the null hypothesis? Explain.

(b) If  = 005 what was the value of ?

(c) Now suppose a chi-squared test is used. If 2 = 120 do you reject the null hypothesis?
Explain. (Hint: See Figure E.6 or Table A.2 or A.3).

(d) If  = 005 what was the value of the 2 statistic.

12. Repeat the previous exercise with  = 70,  = 8,  = 27,  = 014, and 2 = 130.

13. Suppose we add a regressor. For each of the following state whether the regressor is definitely

statistically significant at level 005 using default standard errors.

(a) A  test of statistical significance of the variable has  = 004

(b) The inclusion of the regressor increased 2

(c) The inclusion of the regressor increased adjusted 2

(d) The inclusion of the regressor decreased 

(e) The  statistic comparing the model without this additional regressor and with this

additional regressor had  = 004
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14. Consider tests of overall statistical significance under assumptions 1-4. Then  = [ExpSS(−
1)][ResSS(− )].

(a) Show that this implies  = [2(−1)][(1−2)(−)]. Hint: Divide numerator and
denominator by TSS and use the definitions of 2

(b) Will  necessarily increase as 2 increases, holding  and  fixed?

(c) Will  necessarily increase as  increases, holding 2 and  fixed?

15. You are given the estimates b = 10
(6)
+ 72
(40)

2 +16
(5)
3 where standard errors are given in paren-

theses. The sample size is large so you can use standard normal critical values.

(a) Obtain the  statistic for 2, the coefficient of 2.

(b) Is 2 statistically significant at 5%?

(c) Provide a 95% confidence interval for 2

16. Repeat the previous exercise if b = 110
(28)

+ 18
(8)
2 +24

(10)
3.

17. You are given the estimates b = 10
(25)

+72
(3)
2 +16

(5)
3 where  statistics are given in parentheses.

The sample size is large so you can use standard normal critical values.

(a) Is 2 statistically significant at 5%?

(b) Obtain the standard error for 2, the coefficient of 2.

(c) Provide a 95% confidence interval for 2

18. Repeat the previous exercise if b = 110
(35)

+ 18
(12)

2 +24
(10)

2.




