Econ 102_A01-A04 (Analysis of Economic Data): Cameron Fall 2021 Solutions to First Midterm Exam

Version A

1.(a) Histogram, discrete is best (as variable takes only six different values).
(b) For a Stata data set (more precisely Stata formatted dataset, usually with extension .dta).
(c) Take the natural logarithm (or $\ln (x))$.
(d) The variable y is a standardized z-score with sample mean $0 \&$ sample standard deviation 1.
(e) $\sum_{i=1}^{3}\left(1+\frac{6}{i}\right)=\left(1+\frac{6}{1}\right)+\left(1+\frac{6}{2}\right)+\left(1+\frac{6}{3}\right)=7+4+3=14$.
(f) $\bar{x}=(3+7+8) / 3=6 . s^{2}=\frac{1}{2}\left\{(3-6)^{2}+(7-6)^{2}+(8-6)^{2}\right\}=\frac{1}{2}\{9+1+4\}=14 / 2=7$.
2.(a) Lower quartile is 252.725 .
(b) The smoothed histogram (not printed in these solutions) will be very right skewed as skewness=4.278 is positive and much greater than zero and/or mean=1656 is much greater than median=803.
(c) A 90 percent confidence interval is $1656.01 \pm t_{1064,05} \times 2488.079 / \sqrt{1065}=$
$=1656.01 \pm 1.646 \times 76.241=1656.01 \pm 125.49=(1530.5,1781.5)$.
(d) mean spending
(e) $H_{0}: \mu=1500$ against $H_{0}: \mu \neq 1500$ at level 0.05 .
$t=(1656.01-1500) /(2488.079 / \sqrt{1065})=156.01 / 76.241=2.046$.
Since $|t|=2.046>t_{1064, .025}=1.962$ reject H_{0}.
We reject $H_{0}: \mu=1500$ at significance level .05 .
3.(a) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$;
(3) Independence of the X_{i}.
(b) $\mu=\mathrm{E}[X]=0.5 \times 10+0.2 \times 20+0.3 \times 30=5+4+9=18$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.5 \times(10-18)^{2}+0.2 \times(20-18)^{2}+0.3 \times(30-18)^{2}$
$=0.5 \times 64+0.2 \times 4+0.3 \times 144=32+0.8+43.2=76$.
(c) The mean of variable u is 0.5 since it is uniformly distributed on the interval $(0,1)$.
(d) Not surprising. For a 95% confidence interval we expect roughly 95% of 1000 or 950 to include μ so 50 do not include μ. 60 is quite close.
(e) \bar{X} has mean 200 , variance $100 / 25=4$ and standard deviation $\sqrt{4}=2$.

Multiple Choice for Version A

$\begin{array}{lcccccc}\text { Question } & \mathbf{1 .} & \mathbf{2 .} & \mathbf{3 .} & \mathbf{4 .} & \mathbf{5} . & \text {. } 100 \pm 2 \times \sqrt{25} .\end{array}$
The course grade will be based on a curve from the combined scores of midterm 1 (20%), midterm $2(20 \%)$, final (40%) and assignments (20%). The curve for this exam is only a guide. Curve below has average GPA 2.72 for this exam.

		A+ 34 and above	C+	23 and above	
Scores out of	35	A	30 and above	C	22 and above
$75 t h$ percentile	$30(86 \%)$	A-	28 and above	C-	20 and above
Median	$26(74 \%)$	B+ 27 and above	D+	19 and above	
25th percentile	$22(63 \%)$	B	26 and above	D	18 and above
		B- 25 and above	D-	17 and above	

Version B of 102A

1.(a) $\sum_{i=1}^{3}(1+6 i)=(1+6 \times 1)+(1+6 \times 2)+(1+6 \times 3)=7+13+19=39$.
(b) The variable y is a standardized z-score with sample mean $0 \&$ sample standard deviation 1.
(c) $\bar{x}=(3+7+2) / 3=4 . s^{2}=\frac{1}{2}\left\{(3-4)^{2}+(7-4)^{2}+(2-4)^{2}\right\}=\frac{1}{2}\{1+9+4\}=14 / 2=7$.
(d) For a Stata data set (more precisely Stata formatted dataset, usually with extension .dta).
(e) Take the natural logarithm (or $\ln (x))$.
(f) Histogram, discrete is best (as variable takes only six different values).
2.(a) Upper quartile is 1995.528 .
(b) The smoothed histogram (not printed in these solutions) will be very right skewed as skewness=4.328 is positive and much greater than zero and/or mean=1692 is much greater than median=807.
(c) A 99 percent confidence interval is $1692.75 \pm t_{920, .005} \times 2566.21 / \sqrt{921}=$
$=1692.75 \pm 2.581 \times 84.559=1692.75 \pm 218.25=(1474.5,1911.0)$.
(d) mean spending
(e) $H_{0}: \mu=1600$ against $H_{0}: \mu \neq 1600$ at level 0.05 .
$t=(1692.75-1600) /(2566.21 / \sqrt{921})=92.75 / 84.559=1.097$.
Since $|t|=1.097<t_{920, .025}=1.963$ do not reject H_{0}.
We do not reject $H_{0}: \mu=1600$ at significance level .05 .
3.(a) $\mu=\mathrm{E}[X]=0.3 \times 10+0.3 \times 20+0.4 \times 30=3+6+12=21$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.3 \times(10-21)^{2}+0.3 \times(20-21)^{2}+0.4 \times(30-21)^{2}$
$=0.3 \times 121+0.3 \times 1+0.4 \times 81=36.3+0.3+32.4=69$.
(b) The mean of variable x is $\frac{1}{6}=0.1667$ since $x=1$ with probability $\frac{1}{6}$ and $x=0$ with probability $\frac{5}{6}$.
(c) \bar{X} has mean 200, variance $900 / 100=9$ and standard deviation $\sqrt{9}=3$.
(d) Surprising. For a 95% confidence interval we expect roughly 95% of 1000 or 950 to include μ. 40 is very different from 950 .
(e) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$;
(3) Independence of the X_{i}.

Multiple Choice for Version B

Question	$\mathbf{1 .}$	$\mathbf{2 .}$	$\mathbf{3}$.	$\mathbf{4}$	$\mathbf{5 .}$	4.
Answer Version B	b	b	c	d	b	

The course grade will be based on a curve from the combined scores of midterm 1 (20\%), midterm $2(20 \%)$, final (40%) and assignments (20%). The curve for this exam is only a guide. Curve below has average GPA 2.72 for this exam.

Scores out of	35
$75 t h$ percentile	$30(86 \%)$
Median	$26(74 \%)$
$25 t h$ percentile	$22(63 \%)$

A+	34 and above	C+	23 and above
A	30 and above	C	22 and above
A-	28 and above	C-	20 and above
B+	27 and above	D+	19 and above
B	26 and above	D	18 and above
B-	25 and above	D-	17 and above

