Econ 102_A (Analysis of Economic Data): Cameron Winter 2019 Solutions to First Midterm Exam

Version A

1.(a) kdensity is best (as it produces a smoothed histogram and data here are continuous).
(b) For delimited datasets (with comma or space) such as .csv files created by a spreadsheet.
(c) This creates a standardized z-score with sample mean 0 and sample standard deviation 1.
(d) Categorical data (with a few categories)
(e) Natural logarithm (or just logarithm).
(f) $\sum_{i=1}^{3} 36 / i^{2}=36 / 1+36 / 4+36 / 9=36+9+4=49$.
(g) $\bar{x}=(12+15+12+13) / 4=13$
$s^{2}=\frac{1}{3}\left\{(12-13)^{2}+(15-13)^{2}+(12-13)^{2}+(13-13)^{2}\right\}=\frac{1}{3}\{1+4+1+0\}=6 / 3=2$.
2.(a) summarize income, detail
(b) The mean as income data are typically right skewed.
(c) A 90 percent confidence interval is $1428.67 \pm t_{.05 ; 839} \times 1494.04 / \sqrt{840}=$
$=1428.67 \pm 1.647 \times 51.549=1428.67 \pm 84.90=(1343.77,1513.56)$.
(d) mean income
(e) $H_{0}: \mu=1500$ against $H_{0}: \mu \neq 1500$ at level 0.05 .
$t=(1428.67-1500) /(1494.04 / \sqrt{840})=-71.33 / 51.549=-1.384$.
Since $|t|=1.384<t .025 ; 839=1.963$ do not reject H_{0}.
We do not reject $H_{0}: \mu=1500$ at significance level .05 .
3.(a) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$; (3) Independence of the X_{i}.
(b) $\mu=\mathrm{E}[X]=0.1 \times 10+0.8 \times 20+0.1 \times 30=10+16+3=20$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.1 \times(10-20)^{2}+0.8 \times(20-20)^{2}+0.1 \times(30-20)^{2}$
$=0.1 \times 100+0.8 \times 0+0.1 \times 100=10+0+10=20$.
(c) The histogram for x will have two spikes - a larger one at 0 and a smaller one at 1 .
(d) Not surprising. For a 95% confidence interval we expect roughly 95% of 1000 or 950 to include u. 940 is quite close.
(f) \bar{X} has mean 20 , variance $400 / 100=4$ and standard deviation 2 . And \bar{X} is approximately normally distributed (by the central limit theorem). So in the range $20 \pm 2 \times 2=(16,24)$.

Multiple Choice for Version A

$$
\text { Question } \quad 1 . \quad 2.3 .4 .5 .
$$

Answer Version A $\begin{array}{llllll} & c & a & c & d\end{array}$
The course grade will be based on a curve from the combined scores of midterm $1(22.5 \%)$, midterm $2(22.5 \%)$, final (45%) and assignments (10%). The curve for this exam is only a guide. Suggested average GPA for this course is 2.7 . Curve below has average GPA 2.68 for this exam.

Scores out of	35
75th percentile	$29(83 \%)$
Median	$26.5(76 \%)$
25th percentile	$22.5(64 \%)$

A+ $\quad 35$ and above	C+ 24 and above		
A	30.5 and above	C	22.5 and above
A-	28.5 and above	C-	21.5 and above
B+	27.5 and above	D+ 20.5 and above	
B	26 and above	D	19 and above
B-	25 and above	D- 18 and above	

Version B of 102A

1.(a) $\bar{x}=(12+18+15) / 3=15$
$s^{2}=\frac{1}{2}\left\{(12-15)^{2}+(18-15)^{2}+(15-15)^{2}\right\}=\frac{1}{2}\{9+9+0\}=18 / 2=9$.
(b) This creates a standardized z-score with sample mean 0 and sample standard deviation 1.
(c) Categorical data (with a few categories).
(d) For delimited datasets (with comma or space) such as .csv files created by a spreadsheet.
(e) kdensity is best (as it produces a smoothed histogram and data here are continuous).
(f) Natural logarithm (or just logarithm).
(g) $\sum_{i=1}^{3}\left(1+2 i^{3}\right)=\left(1+2 \times 1^{3}\right)+\left(1+2 \times 2^{3}\right)+\left(1+2 \times 3^{3}\right)=3+17+55=75$.
2.(a) summarize income, detail
(b) The median as income data are typically right skewed.
(c) A 90 percent confidence interval is $1375.22 \pm t_{005 ; 624} \times 1352.67 / \sqrt{625}=$
$=1375.22 \pm 1.647 \times 54.107=1375.22 \pm 89.11=(1286.11,1464.33)$.
(d) mean income
(e) $H_{0}: \mu=1200$ against $H_{0}: \mu \neq 1200$ at level 0.05 .
$t=(1200-1375.22) /(1352.67 / \sqrt{625})=-175.22 / 54.107=3.238$.
Since $|t|=3.238>t_{.025 ; 624}=1.964$ reject H_{0}.
We reject $H_{0}: \mu=1200$ at significance level .05 .
3.(a) The histogram will have just two spikes - a lower one at 0 and a higher one at 1 .
(b) \bar{X} has mean 30 , variance $900 / 100=9$ and standard deviation 3 . And \bar{X} is approximately normally distributed (by the central limit theorem). So in the range $30 \pm 2 \times 3=(24,36)$.
(c) $\mu=\mathrm{E}[X]=0.1 \times 1+0.8 \times 2+0.1 \times 3=0.1+1.6+0.3=2$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.1 \times(1-2)^{2}+0.8 \times(2-2)^{2}+0.1 \times(3-2)^{2}$
$=0.1 \times 1+0.8 \times 0+0.1 \times 1=0.1+0+0.1=0.2$.
(d) This is surprising. For a 95% confidence interval we expect roughly 95% of 1000 or 950 to include $\mu .740$ is quite different.
(e) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$; (3) Independence of the X_{i}.

Multiple Choice for Version B

Question 1. 2. 3. 4. 5.

The course grade will be based on a curve from the combined scores of midterm $1(22.5 \%)$, midterm $2(22.5 \%)$, final (45%), quizzes (5%) and assignments (5%). The curve for this exam is only a guide. Suggested average GPA for this course is 2.7. Curve below has average GPA 2.68 for this exam.

Scores out of	35
75 th percentile	$29(83 \%)$
Median	$26.5(76 \%)$
25th percentile	$22.5(64 \%)$

A+	35 and above	C+ 24 and above	
A	30.5 and above	C	22.5 and above
A-	28.5 and above	C-	21.5 and above
B+	27.5 and above	D+ 20.5 and above	
B	26 and above	D	19 and above
B-	25 and above	D-	18 and above

